Skip to main content
Log in

Karst system developed in salt layers of the Lisan Peninsula, Dead Sea, Jordan

  • Original Article
  • Published:
Environmental Geology

Abstract

The Lisan Peninsula, Jordan, is a massive salt layer accumulated in the inner part of the Dead Sea’s precursory lakes. This tongue-shaped, emergent land results in a salt diapir uplifted in the Dead Sea strike-slip regional stress field and modified by the water level fluctuations of the last lake during the Holocene. These two elements, associated with dissolution caused by rainfall and groundwater circulation, resulted in an authentic karst system. Since the 1960s, the Dead Sea lowering of 80 cm to 1 m per year caused costly damages to the industrial plant set up on the peninsula. The Lisan karst system is described in this article and the components of the present dynamic setting clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abel FM (1929) Notes complémentaires sur la Mer Morte (Complementary information on the Dead Sea). Rev Biblique 38(2):247–252

    Google Scholar 

  • Abou Karaki N (1987) Synthèse et carte sismotectonique des pays de la bordure de la Méditerranée: sismicité du système de faille du Jourdain – Mer Morte (Synthesis and seismotectonic map of the countries bording the Mediterranean Sea: seismicity of the Jordan – Dead Sea Fault System), University Louis Pasteur, Institut de Physique du Globe of Strasbourg, France

  • Baer G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S (2002) The lowest place on earth is subsiding—an InSAR perspective. GSA Bull 114(1):12–23

    Article  Google Scholar 

  • Bartov Y, Goldstein SL, Stein M, Enzel Y (2003) Catastrophic arid episodes in the Mediterranean linked with the North Atlantic Heinrich events. Geology 31:439–442

    Article  Google Scholar 

  • Bartov Y, Stein M, Enzel Y, Agnon A, Reches Z (2002) Lake levels and sequence stratigraphy of Lake Lisan, the late pleistocene precursor of the dead sea. Quaternary Res 57:9–21

    Article  Google Scholar 

  • Bartov Y (1999) The Geology of the Lisan formation in Massada Plain and the Lisan peninsula. PhD thesis, The Hebrew University of Jerusalem, Israel

  • Begin ZB, Broecker B, Buchbinder Y, Druckman A, Kaufman M, Magaritz ND (1985) Dead sea and Lake Lisan levels in the last 30,000 years. Geol Surv Isr Bull 85:1–81

    Google Scholar 

  • Ben-Avraham Z (1997) Geophysical framework of the Dead Sea: structure and tectonics. In: Niemi TM, Ben-Avraham Z, Gat J (eds) The Dead Sea, the lake and its setting. Oxford University Press, pp 22–35

  • Bookman R (Ken-Tor), Enzel Y, Agnon A, Stein M (2004) Late holocene lake levels of the Dead Sea. GSA Bull 116 5/6:555–571

  • Bouwer H (1978) Groundwater hydrology. McGraw Hill, New York

  • Closson D, Abou Karaki N, Klinger Y, Hussein MJ (2005) Subsidence hazards assessment in the southern dead sea area, Jordan. Pure and Appl Geophys 162(2):221–248

    Article  Google Scholar 

  • Closson D (2005a) Structural control of sinkholes and subsidence hazards along the Jordanian Dead Sea coast. Environ Geol 47(2):290–301

    Article  Google Scholar 

  • Closson D (2005b) Co-occurrence between the geo-hazards induced by the Dead Sea level lowering and the geological setting—Lisan peninsula, Lynch strait, Ghor Al Haditha, Jordan. PhD thesis, University of Liege, Belgium. Downloadable at http://www.sic.rma.ac.be/∼dclosson/ (last visit January 5, 2006)

  • Closson D, Abou Karaki N, Hansen H, Derauw D, Barbier C, Ozer A (2003a) Space-borne radar interferometric mapping of precursory deformations of a dyke collapse—Dead Sea area—Jordan. Int J Remote Sens 24(4):843–849

    Article  Google Scholar 

  • Closson D, Abou Karaki N, Hussein M J, Al-Fugha H, Ozer A, Mubarak A (2003b) Subsidence and sinkholes along the Jordanian coast of the Dead Sea: contribution of gravimetry and radar differential interferometry. Compte Rendus Geoscience 335(12):869–879

    Article  Google Scholar 

  • Domenico PA, Schwarz FW (1990) Physical and chemical hydrogeology. John Wiley

  • Ek C (1993) Les phénomènes karstiques (Karstic phenomena). Notes de cours. University of Liege, Belgium

  • Freeze RA, Cherry JA (1979) Groundwater. Englewood Cliffs, Prentice-Hall Inc

  • Frumkin A, Magaritz M, Carmi I, Zak I (1991) The Holocene climatic record of the salt caves of Mount Sedom, Israel. The Holocene 1(3):191–200

    Google Scholar 

  • Frumkin (1996) Structure of the northern Mount Sedom salt diapir (Israel) from cave evidence and surface morphology. Isr J Earth Sci 42(2):73–80

    Google Scholar 

  • Garfunkel Z, Ben Avraham Z (1996) The structure of the Dead Sea Basin. Tectonophysics 266:155–176

    Article  Google Scholar 

  • Hall JK (1978) Bathymetric chart of the Dead Sea. Geological Survey of Israel

  • Hall JK (1997) Topography and bathymetry of the Dead Sea depression. In: Niemi TM, Ben-Avraham Z, Gat J (eds) The Dead Sea, the lake and its setting. Oxford University Press, pp 11–21

  • Hallot E (1999) Karst dans les évaporites: marqueur efficace des événements récents, l’exemple du Mons Sedom (Israël) (Karst in evaporate rocks: efficient indicator of past events, the example of the Mount Sedom in Israel). Bulletin de la Société géographique de Liège 37(2):19–31

    Google Scholar 

  • Higginbottom LE (1966) The engineering geology of chalk. In: Proceedings of symposium on chalk in earthworks and foundations. Institute of Civil Engineers, London, pp 1–13

  • Hughes TH, Memon BA, LaMoreaux PE (1994) Landfills in karst terrains. Bull Association of Engineering Geologists, XXXI (2):203–208

  • Jennings JE (1968) Syngenetic karst in Australia. Publication G/5. Australia National University, Department of Geography, Canberra, pp 41–110

  • Kadan G (1997) Evidence of Dead-Sea level fluctuations and neotectonic events in the Holocene fan-delta of Nahal Darga. M.Sc., Ben Gurion University of the Negev, Israel

  • Klein C (1985) Fluctuations of the level of the Dead Sea and climatic fluctuations in the country during historical times. In: International association of hydrological sciences, symposium, scientific basis for water resources management, Jerusalem, September 1985, Israel, pp 197–224

  • Klimchouk A (1996) The typology of gypsum karst according to its geological and geomorphological evolution. In: Klimchouk A, Lowe D, Cooper A, Sauro U (eds) Gypsum karst of the world. International Journal of Speleology, Physical Speleology, Theme Issue 25 (3/4):pp 49–60

  • LaMoreaux PE (1991) History of Karst Hydrogeological Studies. Proceedings of the International Conference on Environmental Changes in Karst Areas. IGU–UIS, Italy, 15–27 Sep. 1991

  • LaMoreaux PE, Hughes TH, Memon BA, Lineback N (1989) Hydrogeologic assessment—Figeh Spring, Damascus, Syria. Environ Geol Water Sci 13(2):77–127

    Google Scholar 

  • Marui A (2003) Groundwater conditions along the seawater/freshwater interface on a volcanic island and a depositional area in Japan. Geol Q 47(4):381–388

    Google Scholar 

  • Migowski C, Agnon A, Bookman R (Ken-Tor), Negendank J, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea Transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222:301–314

    Article  Google Scholar 

  • Milanovic PT (1981) Karst Hydrogeology. Water Resources Publishing, Littleton, CO, 434 p

  • Neev D, Emery KO (1995) The destruction of Sodom, Gomorrah, and Jericho. Oxford University Press, New York

    Google Scholar 

  • Neev D, Emery KO (1967) The Dead Sea—depositional processes and environments of evaporates. Geol Sur Isr Bull 41:1–147

    Google Scholar 

  • Newton JG (1987) Development of sinkholes resulting from man’s activities in the eastern United States, U.S. Geological Survey, Circular 968. U.S. Geological Survey, Denver, CO, 54 p

  • Rosendahl W, Wrede V, Rosendahl G (1999) Hohlen in den Lisan-Schichten Jordaniens (Caverns in the Lisan layers, Jordan). In: Natur und Mensch, Jahresmitteilungen 1998, Naturhistorische Gesellschaft Nurnberg, pp 45–56

  • Salameh E, El-Naser H (2000a) Changes in the Dead Sea level and their impacts on the surrounding groundwater bodies. Acta Hydrochem Hydrobiol 28:2–33

    Google Scholar 

  • Salameh E, El-Naser H (2000b) The interface configuration of the fresh/Dead Sea Water—theory and Measurements. Acta Hydrochem Hydrobiol 28(6):323–328

    Article  Google Scholar 

  • Stein M (2001) The sedimentary and geochemical record of Neogene–Quaternary water bodies in the Dead Sea Basin—inferences for the regional paleoclimatic history. J Paleolimnol 26(3):271–282

    Article  Google Scholar 

  • Sunna BF (1986) The geology of salt deposits in the Lisan peninsula - Dead Sea. Seminar on salt in the Arab World, Ministry of Energy and Mineral Resources, Natural Resources Authorities, May 4–6, Amman, Jordan

  • Taqieddin SA, Abderahman NS, Atallah M (2000) Sinkhole hazards along the Eastern Dead Sea shoreline area, Jordan: a geological and geotechnical consideration. Environ Geol 39(11):1237–1253

    Article  Google Scholar 

  • USGS (1999) Jordanian Ministry of Water and Irrigation, Palestinian Water Authority, the Israeli Hydrological Service. Overview of Middle East Water Resources: water resources of Palestinian, Jordanian, and Israeli Interest. U.S. Government Printing Office

  • Waltham AC, Fookes PG (2003) Karst terrains. In: Fookes PG, Lee M and Milligan G (eds) Geomorphology for engineers. Whittles Press, Caithness

  • White S (2000) Syngenetic karst in coastal dune limestone: a review. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National speleological society, Huntsville, pp 234–237

  • Withjack MO, Scheiner C (1982) Fault patterns associated with domes—an experimental and analytical analysis. Am Assoc Petrol Geol Bull 66(3):302–316

    Google Scholar 

Download references

Acknowledgments

The work of Prof. Najib Abou Karaki was done with the support of the European Commission funded APAME project (Contract ICA3-CT-2002–10024). The field work of Damien Closson in Jordan, in 2005, was done with the support of H.E. Mr. Ambassador of Belgium, Michel Godfrind. The authors would like to thank Professor Camille Ek of the University of Liege, Belgium, for fruitful discussion and advice. The satellite view of Fig. 10 is a subset of a Space Shuttle photograph (July 14, 2005). Mission: ISS011; Roll: E; Frame: 10551. Image Science and Analysis Laboratory, NASA-Johnson Space Center. “Astronaut Photography of Earth-Display Record”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Closson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Closson, D., LaMoreaux, P.E., Abou Karaki, N. et al. Karst system developed in salt layers of the Lisan Peninsula, Dead Sea, Jordan. Environ Geol 52, 155–172 (2007). https://doi.org/10.1007/s00254-006-0469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0469-9

Keywords

Navigation