Skip to main content
Log in

Time-dependent changes in the strength of repair mortar used in the loss compensation of stone

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Repair mortar and mixture of repair mortar with porous limestone sand aggregate were tested under laboratory conditions. Water absorption properties and micro-fabric analyses with a combination of strength tests were applied to assess the durability and compatibility of repair mortar with porous limestone. Uniaxial compressive strength and flexural strength were measured after 3, 7, 14, 28 and 90 days of casting. Durability was tested by comparing strength test results of samples kept air dry, water saturated, dried in drying chamber, freeze–thaw and non-standardized freeze–thaw cycles. The results indicate that with time various trends in strength were observed. In general, limestone aggregate content decreases more the compressive strength more than the flexural strength of the mortar. Standardized freeze–thaw tests of saturated samples caused a rapid material loss after 25 cycles, while freeze–thaw tests of undersaturated samples demonstrated that even after 100 cycles the test specimens still have a significant strength. Water-saturated samples that contain 50% of limestone aggregate have a 50% loss of strength in comparison with saturated repair mortar, while air-dry and water-saturated repair mortar has a minor strength difference after 90 days. The use of smaller amounts of porous limestone aggregate in repair mortar allow the preparation of repairs that are compatible with the monuments of Central Europe that were constructed from porous limestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barsottelli M, Cellai GF, Fratini F, Manganelli F (2001) The hygrometric behaviour of some artificial stone materials used as elements of masonry walls. Mater Struct 34:211–216

    Article  Google Scholar 

  • Beck K, Al-Mukhtar M (2008) Formulation and characterization of an appropriate lime-based mortar for use with a porous limestone. Environ Geol 56:715–727

    Article  Google Scholar 

  • Benachour Y, Davy CA, Skoczylas F, Houari H (2008) Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem Concr Res 38:727–736

    Article  Google Scholar 

  • Budak M, Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N (2008) Chemical characterization of cretan clays for the design of restoration mortars. Microchim Acta 162:325–331

    Article  Google Scholar 

  • Bultrini G, Fragala I, Ingo GM, Lanza G (2006) Minero-petrographic, thermal and microchemical investigation of historical mortars used in Catania (Sicily) during the XVII century A.D. Appl Phys 83:529–536

    Article  Google Scholar 

  • Ghrici M, Kenai S, Said-Mansour M (2007) Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem Concr Compos 29:542–549

    Article  Google Scholar 

  • Gosselin C, Verges-Belmin V, Royer A, Martinet G (2009) Natural cement and monumental restoration. Mater Struct 42:749–763

    Article  Google Scholar 

  • Griswold J, Uricheck S (1998) Loss compensation methods for stone. J Am Inst Conserv 37:89–110

    Article  Google Scholar 

  • Hanley R, Pavía S (2008) A study of the workability of natural hydraulic lime mortars and its influence on strength. Mater Struct 41:373–381

    Google Scholar 

  • Hees RPJ, Binda L, Papayianni I, Toumbakari (2004) Characterisation and damage analysis of old mortars. Mater Struct 37:644–648

    Article  Google Scholar 

  • Heikal M, El-Didamony MH, Morsy MS (2000) Limestone-filled pozzolanic cement. Cem Concr Res 30:1827–1834

    Article  Google Scholar 

  • Kieslinger A (1949) Die Steine von Sankt Stephan. Verlag Herold, Wien

    Google Scholar 

  • Kriston L (2000) A kő és vakolatrestaurálás alapismeretei. MKE, Budapest, pp 113–119

    Google Scholar 

  • Laho M, Franzen C, Holzer R, Mirwald PW (2010) Pore and hygric properties of porous limestones a case study from Bratislava, Slovakia. In: Přikryl R, Török Á (eds) Natural stone resources for historical monuments, Geological Society, London, Special Publications 333, pp 165–174

  • Lanas J, Pérez Bernal JL, Bello MA, Alvarez Galindo JI (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem Concr Res 34:2191–2201

    Article  Google Scholar 

  • Lawrence M, Walker P, D’Ayala D (2006) Non-hydraulic lime mortars. The influence of binder and filler type on early strength development. J Archit Conserv 12:7–33

    Google Scholar 

  • Lindqvist JE, Sandström M (2000) Quantitative analysis of historical mortars using optical microscopy. Mater Struct 33:612–617

    Google Scholar 

  • Luque A, Cultrone G, Sebastián E (2010) The use of lime mortars in restoration work on architectural heritage. In: Bostenaru Dan M, Přikryl R, Török Á (eds) Materials, technologies and practice in historic heritage structures. Springer, Dordrecht, pp 197–207

    Chapter  Google Scholar 

  • Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni I (2005a) Investigative methods for the characterisation of historic mortars part 1: minerological characterization. Mater Struct 38:761–769

    Article  Google Scholar 

  • Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni I (2005b) Investigative methods for the characterisation of historic mortars part 2: chemical characterization. Mater Struct 38:771–780

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Bisbikou K (2000) Physico-chemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures. Constr Build Mater 12:1561–1571

    Google Scholar 

  • Papayianni I (2006) The longevity of old mortars. Appl Phys A 83:685–688

    Article  Google Scholar 

  • Papayianni I, Stefanidou M, Pachta V (2008) Design and application of artificial stone compatible to the existing old one in the archeological site of Pella. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol I. Nicolaus Copernicus University Press, Torun, pp 709–716

    Google Scholar 

  • Pavia S, Toomey B (2008) Influence of the aggregate quality on the physical properties of natural feebly hydraulic lime mortars. Mater Struct 41:559–569

    Article  Google Scholar 

  • Pavia S, Fitzgerald B, Treacy E (2006) An assessment of lime mortars for masonry repair. Concrete Research in Ireland Colloquium, University College Dublin, Dublin, pp 101–108

  • Pecchioni E, Malesani P, Bellucci B, Fratini F (2005) Artificial stones utilised in florence historical palaces between the XIX and XX centuries. J Cult Herit 6:227–233

    Article  Google Scholar 

  • Přikryl R, Šťastná A (2010) Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of medieval Charles Bridge in Prague (Czech Republic). Eng Geol 115:257–267

    Article  Google Scholar 

  • Siegesmund S, Török Á, Hüpers A, Müller C, Klemm W (2007) Mineralogical, geochemical and microfabric evidences of gypsum crusts: a case study from Budapest. Environ Geol 52(2):358–397

    Article  Google Scholar 

  • Sinan C (2003) Aggregate/mortar interface: influence of silica fume at the micro- and macro-level. Cem Concr Compos 25:557–564

    Article  Google Scholar 

  • Szemerey KB, Török Á (2008) Műemléki plasztikus kőkiegészítő anyagok jellemzői és felhasználhatósága. In: Török Á, Vásárhelyi B (eds) Mérnökgeológia-Kőzetmechanika 2008. Műegyetemi kiadó, Budapest, pp 203–214

    Google Scholar 

  • Török Á (2002) Oolitic limestone in polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. In: Siegesmund S, Weiss TS, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies. Geological Society, London, Special Publications 205, pp 363–379

  • Török Á (2007) Morphology and detachment mechanism of weathering crusts of porous limestone in the urban environment of Budapest. Cent Eur Geol 50(3):225–240

    Article  Google Scholar 

  • Török Á, Rozgonyi N, Prikryl R, Prikrylová J (2004) Leithakalk: the ornamental and building stone of Central Europe, an overview. In: Prikryl R (ed) Dimension stone. Balkema, Rotterdam, pp 89–93

    Google Scholar 

  • Tunçoku SS, Caner-Saltık EN (2006) Opal-A rich additives used in ancient lime mortars. Cem Concr Res 36:1886–1893

    Article  Google Scholar 

  • Vasari G (1991) The lives of the most excellent painters, sculptors, and architects. In: Bondanella JC, Bondanella P (eds) Oxford University Press, New York

  • Vitruvius P (2001) Ten books on architecture. In: Rowland ID (ed) Thomas Noble, Texas

Download references

Acknowledgments

The financial support of DAAD-MÖB project (P-MÖB/842) and the Hungarian Scientific Research Fund (OTKA no. K63399) are appreciated. This work is connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The authors are grateful to Gy. Emszt, B. Pálinkás, É. Lublóy, V. Rónaky for the technical help in laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Török.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szemerey-Kiss, B., Török, Á. Time-dependent changes in the strength of repair mortar used in the loss compensation of stone. Environ Earth Sci 63, 1613–1621 (2011). https://doi.org/10.1007/s12665-011-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-0917-z

Keywords

Navigation