Skip to main content

Advertisement

Log in

Co-Existence of Multidrug-Resistant and -Susceptible Strains of Pseudomonas aeruginosa from a Single Clinical Isolate

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and difficult to treat due to acquired-resistance to multiple antibiotics. A pair of strains, M38100A and M38100B, previously identified from a single clinical isolate of P. aeruginosa was investigated to understand phenotypic and genotypic characteristics. Results revealed that the pair of strains was very similar for serum susceptibility, growth rate in a complex medium (Luria–Bertani), RAPD-genotype profiles, status of genes encoding type III secretion toxins, and no extra-chromosomal DNA. However, antibiotic susceptibility of the strain M38100B showed resistant to all tested-antibiotics while the strain M38100A showed susceptible to the same tested-antibiotics as similar levels of P. aeruginosa PAO1. The strain M38100B exhibited no growth in a minimal medium as a sole carbon and nitrogen source of glutamate while the strain M38100A grew well in the same minimal medium. These results suggest that multidrug resistance of the strain M38100B may be caused by multiple mutations on its genomic DNA and a precursor stage for a homogeneous multidrug resistant population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352(19):1992–2001

    Article  CAS  PubMed  Google Scholar 

  2. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67(3):351–368

    Article  CAS  PubMed  Google Scholar 

  3. Hancock RE, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3(4):247–255

    Article  CAS  PubMed  Google Scholar 

  4. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56(1):20–51

    Article  CAS  PubMed  Google Scholar 

  5. Mulvey MR, Simor AE (2009) Antimicrobial resistance in hospitals: how concerned should we be? CMAJ 180(4):408–415

    PubMed  Google Scholar 

  6. Llobet E, Tomas JM, Bengoechea JA (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154(Pt 12):3877–3886

    Article  CAS  PubMed  Google Scholar 

  7. Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4(4):257–261

    Article  CAS  PubMed  Google Scholar 

  8. Falagas ME, Makris GC, Dimopoulos G, Matthaiou DK (2008) Heteroresistance: a concern of increasing clinical significance? Clin Microbiol Infect 14(2):101–104

    CAS  PubMed  Google Scholar 

  9. Maor Y, Hagin M, Belausov N, Keller N, Ben-David D, Rahav G (2009) Clinical features of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia versus those of methicillin-resistant S. aureus bacteremia. J Infect Dis 199(5):619–624

    Article  PubMed  Google Scholar 

  10. D’Mello D, Daley AJ, Rahman MS, Qu Y, Garland S, Pearce C et al (2008) Vancomycin heteroresistance in bloodstream isolates of Staphylococcus capitis. J Clin Microbiol 46(9):3124–3126

    Article  PubMed  Google Scholar 

  11. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE et al (2006) Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50(9):2946–2950

    Article  CAS  PubMed  Google Scholar 

  12. Rinder H, Mieskes KT, Loscher T (2001) Heteroresistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 5(4):339–345

    CAS  PubMed  Google Scholar 

  13. Morand B, Muhlemann K (2007) Heteroresistance to penicillin in Streptococcus pneumoniae. Proc Natl Acad Sci USA 104(35):14098–14103

    Article  CAS  PubMed  Google Scholar 

  14. Alam MR, Donabedian S, Brown W, Gordon J, Chow JW, Zervos MJ et al (2001) Heteroresistance to vancomycin in Enterococcus faecium. J Clin Microbiol 39(9):3379–3381

    Article  CAS  PubMed  Google Scholar 

  15. Yamazumi T, Pfaller MA, Messer SA, Houston AK, Boyken L, Hollis RJ et al (2003) Characterization of heteroresistance to fluconazole among clinical isolates of Cryptococcus neoformans. J Clin Microbiol 41(1):267–272

    Article  CAS  PubMed  Google Scholar 

  16. Kwon DH, Lu CD (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51(6):2070–2077

    Article  CAS  PubMed  Google Scholar 

  17. Lu CD, Itoh Y, Nakada Y, Jiang Y (2002) Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 184(14):3765–3773

    Article  CAS  PubMed  Google Scholar 

  18. Mahenthiralingam E, Campbell ME, Foster J, Lam JS, Speert DP (1996) Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34(5):1129–1135

    CAS  PubMed  Google Scholar 

  19. Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP (2003) Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol 41(8):3526–3531

    Article  CAS  PubMed  Google Scholar 

  20. Kwon DH, Lu CD (2006) Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 50(5):1615–1622

    Article  CAS  PubMed  Google Scholar 

  21. Falagas ME, Koletsi PK, Bliziotis IA (2006) The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol 55(Pt 12):1619–1629

    Article  CAS  PubMed  Google Scholar 

  22. Falagas ME, Bliziotis IA (2007) Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29(6):630–636

    Article  CAS  PubMed  Google Scholar 

  23. Falagas ME, Rafailidis PI, Matthaiou DK, Virtzili S, Nikita D, Michalopoulos A (2008) Pandrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents 32(5):450–454

    Article  CAS  PubMed  Google Scholar 

  24. Wang CY, Jerng JS, Chen KY, Lee LN, Yu CJ, Hsueh PR et al (2006) Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin Microbiol Infect 12(1):63–68

    Article  CAS  PubMed  Google Scholar 

  25. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51(11):4062–4070

    Article  CAS  PubMed  Google Scholar 

  26. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288(5469):1251–1254

    Article  CAS  PubMed  Google Scholar 

  27. Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL et al (2008) Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190(24):7910–7917

    Article  CAS  PubMed  Google Scholar 

  28. Macia MD, Blanquer D, Togores B, Sauleda J, Perez JL, Oliver A (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49(8):3382–3386

    Article  CAS  PubMed  Google Scholar 

  29. Juan C, Macia MD, Gutierrez O, Vidal C, Perez JL, Oliver A (2005) Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 49(11):4733–4738

    Article  CAS  PubMed  Google Scholar 

  30. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34(5):634–640

    Article  CAS  PubMed  Google Scholar 

  31. Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P (2002) Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 34(5):603–611

    Article  CAS  PubMed  Google Scholar 

  32. Kwon DH, Versalovic J (2009) Fur-independent induction of Helicobacter pylori flavodoxin-encoding gene (fldA) under iron starvation. Helicobacter 14(2):141–146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong H. Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahida, K., Kwon, D.H. Co-Existence of Multidrug-Resistant and -Susceptible Strains of Pseudomonas aeruginosa from a Single Clinical Isolate. Curr Microbiol 61, 19–24 (2010). https://doi.org/10.1007/s00284-009-9570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9570-0

Keywords

Navigation