Skip to main content
Log in

Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Patagonian Shelf is a very productive region with different ecosystem structures. A long history of fishing in the Southwestern Atlantic Ocean combined with a complex hydrographic structure, with a permanent front over the shelf-break and different coastal frontal regions, and a wide non-frontal area in between have made the food web in this area more complex and have resulted in changes to the spatialtemporal scale. Stable isotopes of carbon and nitrogen were used to determine the trophic structure of the Patagonian shelf break which was previously poorly understood. The results indicated that the average δ15N value of pelagic guild (Illex argentinus) was remarkable lower than those of the other guilds. The δ13C values of almost all species ranged from -17‰ to -18‰, but Stromateus brasiliensis had a significant lower δ13C value. Compared with the southern Patagonian shelf, short food chain length also occurred. The impact of complex oceanographic structures has resulted in food web structure change to the temporal-spatial scale on the Patagonian shelf. The Patagonian shelf break can be considered as a separated ecosystem structure with lower δ13C values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acha E M, Mianzan H W, Guerrero R A, Favero M, Bava J. 2004. Marine fronts at the continental shelves of austral South America: physical and ecological processes. J. Mar. Syst., 44 (1–2): 83–105.

    Article  Google Scholar 

  • Agersted M D, Bode A, Nielsen T G. Trophic position of coexisting krill species: A stable isotope approach. Mar. Ecol. Progr. Ser., 516:139-151.

  • Alemany D, Acha E M, Iribarne O O. 2014. Marine fronts are important fishing areas for demersal species at the Argentine Sea (Southwest Atlantic Ocean). J. Sea Res., 87: 56–67.

    Article  Google Scholar 

  • Arkhipkin A, Brickle P, Laptikhovsky V. 2013. Links between marine fauna and oceanic fronts on the Patagonian Shelf and Slope. Arquipelago-Life Mar. Sci., 30: 19–37.

    Google Scholar 

  • Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8): 911–917.

    Article  Google Scholar 

  • Boltovskoy D. 2000. South Atlantic Zooplankton. Backhuys Publishers, Leiden. 1706p.

    Google Scholar 

  • Botto F, Gaitán E, Mianzan H, Acha M, Giberto D, Schiarit A, Iribarne O. 2011. Origin of resources and trophic pathways in a large SW Atlantic estuary: an evaluation using stable isotopes. Estuar. Coast. Shelf Sci., 92 (1): 70–77.

    Article  Google Scholar 

  • Calvert S E, Nielsen B, Fontugne M R. 1992. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 359 (6392): 223–225.

    Article  Google Scholar 

  • Chen X J, Liu B L, Chen Y. 2008. A review of the development of Chinese distant-water squid jigging fisheries. Fish. Res., 89 (3): 211–221.

    Article  Google Scholar 

  • Ciancio J E, Pascual M A, Botto F, Frere E, Iribarne O. 2008. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol. Oceanogr., 53 (2): 788–798.

    Article  Google Scholar 

  • Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust r. Ecol., 18 (1): 117–143.

    Article  Google Scholar 

  • DeNiro M J, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197 (4300): 261–263.

    Article  Google Scholar 

  • Drago M, Crespo E A, Aguilar A, Cardona L, García N, Dans S L, Goodall N. 2009. Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis. Mar. Ecol. Prog r. Ser., 384: 273–286.

    Article  Google Scholar 

  • Fisk A T, Tittlemier S A, Pranschke J L, Norstrom R J. 2002. Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology, 83 (8): 2 162–2 172.

    Article  Google Scholar 

  • Forero M G, Bortolotti G R, Hobson K A, Donazar J A, Bertelloti M, Blanco G. 2004. High trophic overlap within the seabird community of Argentinean Patagonia: a multiscale approach. J. Anim. Ecol., 73 (4): 789–801.

    Article  Google Scholar 

  • Froese R, Pauly D. 2011. FishBase. June 2011 version, http://www.fishbase.org. (Accessed on 2016-05-30.

    Google Scholar 

  • Haimovici M. 1998. Present state and perspectives for the southern Brazil shelf demersal fisheries. Fish. Manag. Ecol., 5 (4): 277–289.

    Article  Google Scholar 

  • Jackson G D, Bustamante P, Cherel Y, Fulton E A, Grist E P M, Jackson C H, Nichols P D, Pethybridge H, Phillips K, Ward R D, Xavier J C. 2007. Applying new tools to cephalopod trophic dynamics and ecology: perspectives from the Southern Ocean Cephalopod Workshop, February 2–3, 2006. Rev. Fish Biol. Fish., 17 (2–3): 79–99.

    Article  Google Scholar 

  • Laptikhovsky V V. 2004. A comparative study of diet in three sympatric populations of Patagonotothen species (Pisces: Nototheniidae). Polar Biol., 27 (4): 202–205.

    Article  Google Scholar 

  • Laptikhovsky V, Arkhipkin A, Brickle P. 2013. From small bycatch to main commercial species: explosion of stocks of rock cod Patagonotothen ramsayi (Regan) in the Southwest Atlantic. Fish. Res., 147: 399–403.

    Article  Google Scholar 

  • Leichter J J, Witman J D. 2009. Basin-scale oceanographic influences on marine macroecological patterns. In: Witman J D, Roy K eds. Marine Macroecology. University of Chicago Press, London. p. 205–226.

  • Mann K H, Lazier J R N. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. 3 rd edn. Blackwell Publishing Ltd., Cambridge, USA. 512p.

    Google Scholar 

  • Mouat B, Collins M A, Pompert J. 2001. Patterns in the diet of Illex argentin u s (Cephalopoda: Ommastrephidae) from the Falkland Islands jigging fishery. Fish. Res., 52 (1–2): 41–49.

    Article  Google Scholar 

  • Nakamura I, Inada T, Takeda M, Hatanaka H. 1986. Important Fishes Trawled offPatagonia. Japan Marine Fishery Resource Research Centre, Tokyo. 369p.

    Google Scholar 

  • Nyegaard M, Arkhipkin A, Brickle P. 2004. Variation in the diet of Genypterus blacodes (Ophidiidae) around the Falkland Islands. J. Fish Biol., 65 (3): 666–682.

    Article  Google Scholar 

  • Olson D B. 2002. Biophysical dynamics of ocean fronts. In:Robinson A R, McCarthy J J, Rothschild B J eds. The Sea, Volume 12: Biological-Physical Interactions in the Sea. John Wiley & Sons, Inc., New York, USA. p.187-218.

  • Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Mar. Ecol. Prog r. Ser., 429: 103–109.

    Article  Google Scholar 

  • Patterson K R. 1998. Life history of Patagonian squid Loligo gahi and growth parameter estimates using least-squares fits to linear and von Bertalanffy models. Mar. Ecol. Progr. Ser., 47: 65–74.

    Article  Google Scholar 

  • Pauly D, Christensen V, Froese R, Palomares M L. 2000. Fishing down aquatic food webs. Am. Sci., 88 (1): 46–51.

    Article  Google Scholar 

  • Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83 (3): 703–718.

    Article  Google Scholar 

  • Quillfeldt P, Cherel Y, Masello J F, Delord K, McGill R A R, Furness R W, Moodley Y, Weimerskirch H. 2015. Half a world apart? Overlap in nonbreeding distributions of Atlantic and Indian Ocean thin-billed prions. PLoS One, 10 (5): e0125007.

    Article  Google Scholar 

  • Ramírez F, Afán I, Hobson K A, Bertellotti M, Blanco G, Forero M G. 2014. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere, 5 (4): 1–21.

    Article  Google Scholar 

  • Santos R A, Haimovici M. 1997. Food and feeding of the short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) offSouthern Brazil. Fish. Res., 33 (1–3): 139–147.

    Article  Google Scholar 

  • Saporiti F, Bearhop S, Vales D G, Silva L, Zenteno L, Tavares M, Crespo E A, Cardona L. 2015. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog r. Ser., 538: 23–34.

    Article  Google Scholar 

  • Sielfeld W, Vargas M. 1999. Review of marine fish zoogeography of Chilean Patagonia (42°-57°S). Sci. Mar., 63 (S1): 451–463.

    Article  Google Scholar 

  • Van Der Zanden M J, Rasmussen J B. 2001. Variation in δ 15 N and δ 13 C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46 (8): 2 061–2 066.

    Article  Google Scholar 

  • Waser N A D, Harrison W G, Head E J H, Nielsen B, Lutz V A, Calvert S E. 2000. Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean. Deep-Sea Res. I, 47 (7): 1 207–1 226.

    Article  Google Scholar 

  • WoRMS Editorial Board. 2014. World register of marine species. www.marinespecies.org. Accessed on 2016-08-30.

    Google Scholar 

  • Wu J P, Calvert S E, Wong C S. 1997. Nitrogen isotope variations in the subarctic northeast pacific: relationships to nitrate utilization and trophic structure. Deep-Sea Res. I, 44 (2): 287–314.

    Article  Google Scholar 

  • Zenteno L, Crespo E, Vales D, Silva L, Saporiti F, Oliveira L R, Secchi E R, Drago M, Aguilar A, Cardona L. 2015. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Bio l., 162 (2): 275–289.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the fisheries observers, crew and the officers of the trawler Longfa, LIU Zijun, CHEN Lvfen, WANG Rui, SONG Qi and REN Zeqian at the College of Marine Sciences, Shanghai Ocean University for their helps in processing the samples. We acknowledge Mr Alan Coughtrey of the Shanghai Ocean University for his help in polishing the language. Finally, we would also like to thank two anonymous reviewers for their contributions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhu  (朱国平).

Additional information

Supported by the National Key Technology R&D Program of China (No. 2013BAD13B03), the National Natural Science Foundation of China (No. 41776185), and the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201203018)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Zhang, H., Yang, Y. et al. Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis. J. Ocean. Limnol. 36, 717–725 (2018). https://doi.org/10.1007/s00343-018-6340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6340-5

Keyword

Navigation