Skip to main content
Log in

Polymer-solvent effects in cellulose urethane and methyl cellulose urethane solutions

  • Research Papers
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The polymer-solvent interaction was studied for two similar cellulose derivatives in the semi-dilute concentration range by static and dynamic light scattering. The trisubstituted 3-chlorophenyl carbamate (3Cl-CTC) and a mixed trisubstituted derivative with methyl groups (degree of methyl substituents: DS Me = 1.6–1.7)combined with the abovementioned 3-chlorophenyl carbamate groups filling the still open positions at the cellulose backbone were synthesized, fractionated and characterized according to standard methods. Different kinds of associations, entangled clusters with a rod-like shape on one side and entanglement networks on the other side, exist in semi-dilute dioxane solutions caused by different polymer-solvent interactions. These quite different associations lead to either a liquid crystalline or a gel-like state upon increase of concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, H. and Doty, P. M. (1953) Light scattering from non-gaussian chains.Journal of Physical Chemistry 57, 958–963.

    Google Scholar 

  • Brant, D. A., Wherter, C. A., Hsu, B. and Burchard, W. (1982) Analysis of cooperative conformational transitions in cellulose and amylose tricarbanilates.Macromolecules 15, 1350–1357.

    Google Scholar 

  • Brown, W. (1984) Slow-mode diffusion in semidilute solutions examined by dynamic light scattering.Macromolecules 17, 66–72.

    Google Scholar 

  • Burchard, W. (1988) Polymer characterization: quasi-elastic and elastic light scattering.Die Makromolekulare Chemie, Macromolecular Symposia 18, 1–35.

    Google Scholar 

  • Burchard, W. (1993) Personal communication.

  • Burchard, W., Schmidt, M. and Stockmayer, W. H. (1980) Information on polydispersity and branching from combined quasi-elastic and integrated scattering.Macromolecules 13, 1265–1272.

    Google Scholar 

  • Burchard, W., Lang, P., Schulz, L. and Coviello, T. (1992) Critical association and thermoreversible gelation of some selected polymers.Die Makromolekulare Chemie, Macromolecular Symposia 58, 21–37.

    Google Scholar 

  • Carnahan, N. F. and Starling, K. E. (1969) Equation of state for nonattracting rigid spheres.Journal of Chemical Physics 51, 635–637.

    Google Scholar 

  • Cloizeaux, J. (1975) The Lagrangian theory of polymer solutions at intermediate concentrations.Journal de Physique 4, 281–291.

    Google Scholar 

  • Conio, G., Bianchi, E., Ciferri, A., Tealdi, A. and Aden, A. D. (1983) Mesophase formation and chain rigidity in cellulose and derivatives. 1 (Hydroxypropyl)cellulose in Dimethylacetamide.Macromolecules 16, 1264–1270.

    Google Scholar 

  • Cotter, M. A. and Martire, D. E. (1970) Statistical mechanics of rodlike particles. I. A scaled particle treatment of a fluid of perfectly aligned rigid cylinders.Journal of Chemical Physics 52, 1902–1908.

    Google Scholar 

  • Coviello, T., Burchard, W., Dentini, M. and Crecenzi (1987) Solution properties of xanthan. 2. Dynamic and static light scattering from semidilute solution.Macromolecules 20, 1102–1107.

    Google Scholar 

  • De Gennes, P.-G. (1979)Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press.

    Google Scholar 

  • Fried, F., Searby, G. M., Seurin-Vellutini, M. J., Dayan, S. and Sixou, S. (1982) Quasi-elastic light scattering from dilute solutions of a semi-rigid macromolecule: cellulose tricarbanilate.Polymer 23, 1755–1758.

    Google Scholar 

  • Gilbert, R. D. (1990) Cellulose and cellulose derivatives as liquid crystals. InAgricultural and Synthetic Polymers — Biogradability and Utilization. (E. D. Glass and G. Swift, eds). ACS Symposium Series433, Washington, DC, pp. 258–272.

  • Gray, D. (1983) Liquid crystalline cellulose derivatives.Journal of Applied Polymer Science Applied Polymer Symposium 37, 179–192.

    Google Scholar 

  • Herning, T., Djabonrov, M., Leblond, J. and Takerkart, G. (1991) Conformation of gelatin chains in aqueous solutions: 2. A quasi-elastic light scattering study.Polymer 32, 3211–3217.

    Google Scholar 

  • Itagaki, H., Takahashi, I., Natsume, M. and Kondo, T. (1994) Gelation of cellulose whose hydroxyl groups are specifically substituted by the fluorescent groups.Polymer Bulletin 32, 77–81.

    Google Scholar 

  • Kamide, K. and Saito, M. (1987) Cellulose and cellulose derivatives: recent advances in physical chemistry.Advances in Polymer Science 83, 1–56.

    Google Scholar 

  • Klohr, E. and Zugenmaier, P. (1994) to be published.

  • Koppel, D. E. (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants.Journal of Chemical Physics 57, 4814–4820.

    Google Scholar 

  • Mathiez, P., Mouttet, C. and Weisbuch, G. (1980) On the nature of the slow modes appearing in quasi-elastic light scattering by semi-dilute polymer solutions.Journal de Physique 41, 519–523.

    Google Scholar 

  • Neugebauer, T. (1943) Berechnung der Lichtstreuung von Fadenkettenlösungen.Annalen der Physik 42, 509–533.

    Google Scholar 

  • Ohta, T. and Oono, Y. (1982) Conformation space renormalization theory of semidilute polymer solutions.Physics Letters 9, 460–464.

    Google Scholar 

  • Oono, Y. and Kohmoto, M. (1983) Renormalization group theory of transport properties of polymer solutions. I. Dilute solutions.Journal of Chemical Physics 78, 520–528.

    Google Scholar 

  • Provencher, S. W. (1982) A constrained regularization method for inverting data represented by linear algebraic or internal equations.Computer Physics Communications 27, 213–227.

    Google Scholar 

  • Schmidt, M. and Stockmayer, W. H. (1984) Combined integrated and dynamic light scattering by poly(γ-benzyl glutamate) in a helicogenic solvent.Macromolecules 17, 553–560.

    Google Scholar 

  • Schulz, L. and Burchard, W. (1989) Lösungsstruktur von Cellulose-2,5-Acetaten.Das Papier 43, 665–673.

    Google Scholar 

  • Schulz, L. and Burchard, W. (1993) Lösungstruktur verschiedener Cellulose-Derivate.Das Papier 1, 1–10.

    Google Scholar 

  • Siekmeyer, M. and Zugenmaier, P. (1990) Solvent dependence of lyotropic liquid-crystalline phases of cellulose tricarbanilate.Makromolekulare Chemie 191, 1177–1196.

    Google Scholar 

  • Steinmeier, H. (1988) Dissertation, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld.

    Google Scholar 

  • Stepanek, P., Perzynski, R., Delsanti, M. and Adam, M. (1984) Osmotic compressibility on semidilute polystyrene-cyclohexane solutions.Macromolecules 17, 2340–2343.

    Google Scholar 

  • Sutler, W. (1970) Dissertation, Universität Freiburg, D-79104 Freiburg i. Br.

    Google Scholar 

  • Sutler, W. and Burchard, W. (1978) Comparative study of the hydrodynamic properties of cellulose and amylose tricarbanilates in dilute solutions: viscosity, sedimentation and diffusion measurements in 1,4-dioxane in the molecular weight range of 500 < M < 5·106.Die Makromolekulare Chemie 179, 1961–1980.

    Google Scholar 

  • Wenzel, M., Burchard, W. and Schätzel, K. (1986) Dynamic light scattering from semidilute cellulose-tri-carbanilate solutions.Polymer 27, 195–201.

    Google Scholar 

  • Yamakawa, H. (1971) Modern theory of polymer solution. Evenston: Harper & Row.

    Google Scholar 

  • Zimm, B. H. (1948) The scattering of light and the radial distribution function of high polymer solutions.Journal of Chemical Physics 16, 1092–1099.

    Google Scholar 

  • Zugenmaier, P. (1974) Conformation and packing analysis of polysaccharides and derivatives.Biopolymers 13, 1127–1139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klohr, E., Zugenmaier, P. Polymer-solvent effects in cellulose urethane and methyl cellulose urethane solutions. Cellulose 1, 259–280 (1994). https://doi.org/10.1007/BF00812509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00812509

Keywords

Navigation