Skip to main content

Advertisement

Log in

A candidate of organum vasculosum of the lamina terminalis with neuronal connections to neurosecretory preoptic nucleus in eels

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Systemic angiotensin II (Ang II) is a dipsogen in terrestrial vertebrates and seawater teleosts. In eels, Ang II acts on the area postrema, a sensory circumventricular organ (CVO) and elicits water intake but other sensory CVOs have not yet been found in the eel forebrain. To identify sensory CVOs in the forebrain, eels were peripherally injected with Evans blue, which immediately binds to albumin, or a rabbit IgG protein. Extravasation of these proteins, which cannot cross the blood–brain barrier (BBB), was observed in the brain parenchyma of the anteroventral preoptic recess (PR) walls. Fenestrated capillaries were observed in the parenchymal margin of the ventral wall of the PR, confirming a deficit of the BBB in the eel forebrain. Immunostaining for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) detected neurons in the lateral region of the anterior parvocellular preoptic nucleus (PPa), which were strongly stained by BBB-impermeable N-hydroxysulfosuccinimide. In the periventricular region of the PPa, many neurons incorporated biotinylated dextran amine conjugated to fluorescein, a retrograde axonal tracer, injected into the magnocellular preoptic nucleus (PM), indicating neuronal connections from the PPa to the PM. The mammalian paraventricular and supraoptic nuclei, homologous to the teleost PM, receive principal neuronal projections from the organum vasculosum of the lamina terminalis (OVLT). These results strongly suggest that the periventricular subpopulation of the PPa, which is most likely to be a component of the OVLT, serves as a functional window of access for systemic signal molecules such as Ang II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amer S, Brown JA (1995) Glomerular actions of arginine vasotocin in the in situ perfused trout kidney. Am J Physiol 269:R775–R780

    PubMed  CAS  Google Scholar 

  • Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactivity in the brain of anelasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420:139–170

    Article  PubMed  Google Scholar 

  • Ando M, Fujii Y, Kadota T, Kozaka T, Mukuda T, Takase I, Kawahara A (2000) Some factors affecting drinking behavior and their interactions in seawater-acclimated eels, Anguilla japonica. Zool Sci 17:171–178

    Article  Google Scholar 

  • Anglade I, Zandbergen T, Kah O (1993) Origin of the pituitary innervation in the goldfish. Cell Tissue Res 273:345355

    Article  Google Scholar 

  • Arenzana FJ, Clemente D, Sánchez-González R, Porteros A, Aijón J, Arévalo R (2005) Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull 66:421–425

    Article  PubMed  CAS  Google Scholar 

  • Babiker MM, Rankin JC (1978) Neurohypophysial hormonal control of kidney function in the European eel (Anguilla anguilla L.) adapted to sea-water or fresh water. J Endocrinol 76:347–358

    Article  PubMed  CAS  Google Scholar 

  • Balment RJ, Lu W, Weybourne E, Warne JM (2006) Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol 147:9–16

    Article  PubMed  CAS  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Villar-Cheda B, Anadón R, Rodicio MC (2008) Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. J Comp Neurol 511:438–453

    Article  PubMed  CAS  Google Scholar 

  • Bond H, Winter MJ, Warne JM, McCrohan CR, Balment RJ (2002) Plasma concentrations of arginine vasotocin and urotensin II are reduced following transfer of the euryhaline flounder (Platichthys flesus) from seawater to fresh water. Gen Comp Endocrinol 125:113–120

    Article  PubMed  CAS  Google Scholar 

  • Canosa LF, Lopez GC, Scharrig E, Lesaux-Farmer K, Somoza GM, Kah O, Trudeau VL (2011) Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J Comp Neurol 519:3748–3765

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Becerra M, Anadón R, Manso MJ (2008) Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: Comparison with other immunohistochemical markers. J Chem Neuroanat 35:306–316

    Article  PubMed  CAS  Google Scholar 

  • Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R (2004) Cholinergic elements in the zebrafish central nervous system: histochemical and immunohistochemical analysis. J Comp Neurol 474:75–107

    Article  PubMed  Google Scholar 

  • Cottrell GT, Ferguson AV (2004) Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul Pept 117:11–23

    Article  PubMed  CAS  Google Scholar 

  • De Luca LA, Jr XZ, Schoorlemmer GH, Thunhorst RL, Beltz TG, Menani JV, Johnson AK (2002) Water deprivation-induced sodium appetite: humoral and cardiovascular mediators and immediate early genes. Am J Physiol Regul Integr Comp Physiol 282:R552–R559

    PubMed  Google Scholar 

  • Finger TE, Kanwal JS (1992) Ascending general visceral pathways within the brainstems of two teleost fishes: Ictalurus punctatus and Carassius auratus. J Comp Neurol 320:509–520

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    PubMed  CAS  Google Scholar 

  • Folgueira M, Anadón R, Yáñez J (2003) Experimental study of the connections of the gustatory system in the rainbow trout, Oncorhynchus mykiss. J Comp Neurol 465:604–619

    Article  PubMed  Google Scholar 

  • Gómez-Segade P, Segade LA, Anadón R (1991) Ultrastructure of the organum vasculosum laminae terminalis in the advanced teleost Chelon labrosus (Risso, 1826). J Hirnforsch 32:69–77

    PubMed  Google Scholar 

  • Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc R Soc Lond B 275:2393–2402

    Article  Google Scholar 

  • Haruta K, Yamashita T, Kawashima S (1991) Changes in arginine vasotocin content in the pituitary of the Medaka (Oryzias latipes) during osmotic stress. Gen Comp Endocrinol 83:327–336

    Article  PubMed  CAS  Google Scholar 

  • Holmqvist BI, Ekström P (1995) Hypophysiotrophic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J Chem Neuroanat 8:125–145

    Article  PubMed  CAS  Google Scholar 

  • Jeong JY, Kwon HB, Ahn JC, Kang D, Kwon SH, Park JA, Kim KW (2008) Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull 75:619–628

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678–686

    PubMed  CAS  Google Scholar 

  • Kah O, Dulka JG, Dubourg P, Thibault J, Peter RE (1987) Neuroanatomical substrate for the inhibition of gonadotrophin secretion in goldfish: existence of a dopaminergic preoptico-hypophyseal pathway. Neuroendocrinology 45:451–458

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto K, Kawashima S (1986) Effects of glucocorticoids and vasopressin on the regeneration of neurohypophyseal hormonecontaining axons after hypophysectomy. Zool Sci 3:723–726

    CAS  Google Scholar 

  • Kobayashi H, Takei Y (1996) The renin-angiotensin system: comparative aspect. Zoophysiology, vol 35. Springer, Berlin

    Book  Google Scholar 

  • Kozaka T, Fujii Y, Ando M (2003) Central effects of various ligands on drinking behavior in eels acclimated to seawater. J Exp Biol 206:687–692

    Article  PubMed  CAS  Google Scholar 

  • Linard B, Anglade I, Corio M, Navas JM, Pakdel F, Saligaut C, Kah O (1996) Estrogen receptors are expressed in a subset of tyrosine hydroxylase-positive neurons of the anterior preoptic region in the rainbow trout. Neuroendocrinology 63:156–165

    Article  PubMed  CAS  Google Scholar 

  • Ma PM (1994) Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 344:242–255

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Vidal B, King JA, Tramu G, Vandesande F, Dufour S, Kah O (1994) Immunocytochemical localization of mammalian GnRH (gonadotropin-releasing hormone) and chicken GnRH-II in the brain of the European silver eel (Anguilla anguilla L.). J Chem Neuroanat 7:227–241

    Article  PubMed  CAS  Google Scholar 

  • Mueller T, Vernier P, Wullimann MF (2004) The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Res 1011:156–169

    Article  PubMed  CAS  Google Scholar 

  • Mukuda T, Ando M (2003a) Medullary motor neurones associated with drinking behaviour of Japanese eels. J Fish Biol 62:1–12

    Article  Google Scholar 

  • Mukuda T, Ando M (2003b) Brain atlas of the Japanese eel: Comparison to other fishes. Mem Fac Integr Arts Sci Hiroshima Univ Ser IV 29:1–25

    Google Scholar 

  • Mukuda T, Ando M (2010) Central regulation of the pharyngeal and upper esophageal reflexes during swallowing in the Japanese eel. J Comp Physiol A 196:111–122

    Article  Google Scholar 

  • Mukuda T, Matsunaga Y, Kawamoto K, Yamaguchi K, Ando M (2005) “Blood-contacting neurons” in the brain of the Japanese eel Anguilla japonica. J Exp Zool 303:366–376

    Article  Google Scholar 

  • Nobata S, Takei Y (2011) The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels. Am J Physiol Regul Integr Comp Physiol 300:R1569–R1577

    Article  PubMed  CAS  Google Scholar 

  • Oldfield BJ, Bicknell RJ, McAllen RM, Weisinger RS, McKinley MJ (1991) Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Res 561:151–156

    Article  PubMed  CAS  Google Scholar 

  • Pérez SE, Yáñez J, Marín O, Anadón R, González A, Rodríguez-Moldes I (2000) Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J Comp Neurol 428:450–474

    Article  PubMed  Google Scholar 

  • Pombal MA, Marín O, González A (2001) Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J Comp Neurol 431:105–126

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, Abalo XM, Rodicio MC, Anadón R, González A (2003) Choline acetyltransferase-immunoreactive neurons in the retina of adult and developing lampreys. Brain Res 993:154–163

    Article  PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol (Berl) 180:401–412

    Article  CAS  Google Scholar 

  • Saito D, Komatsuda M, Urano A (2004) Functional organization of preoptic vasotocin and isotocin neurons in the brain of rainbow trout: central and neurohypophysial projections of single neurons. Neuroscience 124:973–984

    Article  PubMed  CAS  Google Scholar 

  • Sueiro C, Carrera I, Rodríguez-Moldes I, Molist P, Anadón R (2003) Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). Brain Res Dev Brain Res 142:141–150

    Article  PubMed  CAS  Google Scholar 

  • Takei Y (2000) Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol 50:171–186

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Hirano T, Kobayashi H (1979) Angiotensin and water intake in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 38:466–475

    Article  PubMed  CAS  Google Scholar 

  • Teitsma CA, Anglade I, Lethimonier C, Le Drean G, Saligaut D, Ducouret B, Kah O (1999) Glucocorticoid receptor immunoreactivity in neurons and pituitary cells implicated in reproductive functions in rainbow trout: a double immunohistochemical study. Biol Reprod 60:642–650

    Article  PubMed  CAS  Google Scholar 

  • Tsukada T, Nobata S, Hyodo S, Takei Y (2007) Area postrema, a brain circumventricular organ, is the site of antidipsogenic action of circulating atrial natriuretic peptide in eels. J Exp Biol 210:3970–3978

    Article  PubMed  CAS  Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    PubMed  CAS  Google Scholar 

  • Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M (1988) Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 8:282–284

    Article  PubMed  CAS  Google Scholar 

  • Warne JM, Balment RJ (1997) Changes in plasma arginine vasotocin (AVT) concentration and dorsal aortic blood pressure following AVT injection in the teleost Platichthys flesus. Gen Comp Endocrinol 105:358–364

    Article  PubMed  CAS  Google Scholar 

  • Warne JM, Bond H, Weybourne E, Sahajpal V, Lu W, Balment (2005) Altered plasma and pituitary arginine vasotocin and hypothalamic provasotocin expression in flounder (Platichthys flesus) following hypertonic challenge and distribution of vasotocin receptors within the kidney. Gen Comp Endocrinol 44:240–247

    Article  Google Scholar 

  • Weltzien FA, Pasqualini C, Sébert ME, Vidal B, Le Belle N, Kah O, Vernier P, Dufour S (2006) Androgen-dependent stimulation of brain dopaminergic systems in the female European eel (Anguilla anguilla). Endocrinology 147:2964–2973

    Article  PubMed  CAS  Google Scholar 

  • Yamada C, Noji S, Shioda S, Nakai Y, Koayashi H (1990) Intragranular colocalization of arginine vasopressin- and angiotensin II-like immunoreactivity in the hypothalamo-neurohypophysial system of the goldfish, Carassius auratus. Zool Sci 7:257–263

    CAS  Google Scholar 

  • Zucker DK, Wooten GF, Lothman EW (1983) Blood–brain barrier changes with kainic acid-induced limbic seizures. Exp Neurol 79:422–433

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GK (1998) An in vitro technique for tracing neuronal connections in the teleost brain. Brain Res Protocol 3:37–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Y. Furukawa (Hiroshima University) and Dr. M. Ando (The University of Tokyo) for valuable suggestions. This work was supported in part by a Grant-in-Aid for Scientific Research (A) (no. 23247010 to Takei Y) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Mukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukuda, T., Hamasaki, S., Koyama, Y. et al. A candidate of organum vasculosum of the lamina terminalis with neuronal connections to neurosecretory preoptic nucleus in eels. Cell Tissue Res 353, 525–538 (2013). https://doi.org/10.1007/s00441-013-1663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1663-1

Keywords

Navigation