Skip to main content

Advertisement

Log in

Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile

Hydrogéologie et future exploitation durable d’eau souterraine au sein de l’aquifère d’Agua Verde dans le désert d’Atacama, Nord du Chili

Hidrogeología y futura explotación sostenible de agua subterránea del acuífero Agua Verde en el Desierto de Atacama, norte de Chile

智利北部Atacama沙漠Agua Verde含水层水文地质状况及未来可持续的开采量

Hidrogeologia e abstrações futuras de águas subterrâneas a partir do aquífero Agua Verde no Deserto do Atacama, norte do Chile

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.

Résumé

Compte-tenu des conditions hyperarides qui prévalent dans la région de l’aquifère d’Aqua Verde, Nord du Chili, ce système constitue la plus importante source d’eau pour les villes et industries minières voisines. Du fait de la demande croissante en eau dans cette région, la recharge est. étudiée ainsi que l’impact de l’intense activité de pompage dans cet aquifère. Un modèle conceptuel du système hydrogéologique est. élaboré et mis en œuvre au sein d’un modèle numérique hydrodynamique 2-D. Pour évaluer l’impact du changement climatique et du pompage d’eau souterraine, plusieurs scénarios sont simulés en considérant des variations à la fois de la recharge de l’aquifère et des prélèvements. La recharge moyenne estimée de l’aquifère provenant latéralement de la Précordillère (la chaîne de « pré » montagnes) est. d’environ 4,482 m3/j. Les scenarios qui considèrent une augmentation des pompages d’eau montrent une consommation d’eau souterraine non durable qui conduit à une surexploitation de la ressource, car les sorties excèdent les entrées, entraînant une diminution du stock. Plus la diminution est. importante, plus grand est. l’impact de la réduction de la recharge causée par le changement climatique futur considéré. Ces résultats indiquent que les effets combinés de tels facteurs pourraient avoir un impact sévère sur la disponibilité en eau souterraine, comme cela a déjà été trouvé dans d’autres régions dépendant des eaux souterraines situées dans des environnements arides. En outre, les scénarios qui considèrent une réduction du débit de pompage montrent qu’il pourrait être possible de partiellement réduire les dommages déjà causés à l’aquifère par les prélèvements continus depuis 1974; l’augmentation de la capacité de l’usine de désalinisation de Taltal peut ainsi partiellement compenser les impacts du changement climatique sur la disponibilité future en eau souterraine causé par la baisse des précipitations (et donc de la recharge).

Resumen

Las condiciones hiperáridas que prevalecen en el acuífero de Agua Verde en el norte de Chile hacen que este sistema sea la fuente de agua más importante para los pueblos cercanos y las industrias mineras. Debido a la creciente demanda de agua en esta región, se investiga la recarga conjuntamente con el impacto de la intensa actividad de bombeo en este acuífero. Un modelo conceptual del sistema hidrogeológico se desarrolla e implementa en un modelo numérico bidimensional de flujo de agua subterránea. Para evaluar el impacto del cambio climático y la extracción de agua subterránea, se simulan varios escenarios considerando las variaciones en la recarga y en las extracciones del acuífero. La recarga promedio estimada del agua subterránea de Precordillera (cadena pre-montañoso) es de aproximadamente 4,482 m3/día. Los escenarios que consideran un aumento de la extracción de agua muestran un consumo de agua subterránea no sostenible que lleva a una sobreexplotación del recurso, porque las salidas superan los flujos de entrada, lo que provoca el agotamiento del almacenamiento. Cuanto mayor sea el agotamiento, mayor será el impacto de la reducción de la recarga causada por el futuro cambio climático. Este resultado indica que los efectos combinados de tales factores pueden tener un impacto severo en la disponibilidad de agua subterránea como se encuentra en otras regiones dependientes del agua subterránea localizadas en ambientes áridos. Además, los escenarios que consideran una reducción de la tasa de flujo de extracción muestran que es posible aliviar parcialmente el daño ya causado al acuífero por las extracciones continuas desde 1974, y pueden contrarrestar parcialmente los impactos del cambio climático sobre la disponibilidad futura de agua subterránea causada por una disminución en la precipitación (y por lo tanto en la recarga), si la planta de desalinización en Taltal aumenta su capacidad.

摘要

盛行于智利北部Agua Verde含水层超干旱条件使该含水层系统成为周围乡镇和采矿业最重要的水源。由于本地区日益增长的需求,调查了这个含水层的补给情况及强烈抽水造成的影响。建立了水文地质系统的概念模型并应用到二维地下水流数值模型中。为了评价气候变化和地下水开采的影响,考虑到含水层补给和抽水的各种变化,对几种不同的方案进行了模拟。模拟的从Precordillera(之前的山脉)得到的平均地下水侧向补给大约为4,482 m3/天。考虑了地下水抽水量增加的方案显示出地下水消耗不可持续,将导致资源的过量开采,因为外流超过了入流,引起储量的枯竭。消耗的越多,未来气候变化导致的补给减少的影响就越大。这个结果表明,这些因素的综合效应可能对地下水的可用性有严重的影响,正如在其它位于干旱环境下依赖于地下水的地区发现的那样。此外,考虑了抽取流量减少的方案显示,该方案有可能部分减轻1974年以来连续抽水对含水层已经造成的损害,并且如果Taltal海水淡化厂增加产能,方案还可部分抵消降水减少引起的气候变化对未来地下水可用性的影响。

Resumo

As condições hiperáridas que prevalecem no aquífero Agua Verde no norte do Chile tornam este sistema a fonte de água mais importante para cidades próximas e indústrias de mineração. Devido à crescente demanda por água nesta região, a recarga é investigada juntamente com o impacto da intensa atividade de bombeamento neste aquífero. Um modelo conceitual do sistema hidrogeológico é desenvolvido e implementado em um modelo numérico bidimensional de fluxo de água subterrânea. Para avaliar o impacto da mudança climática e extração de águas subterrâneas, vários cenários são simulados considerando as variações na recarga e retiradas do aquífero. A taxa estimada de recarga lateral de águas subterrâneas de Precordillera (cadeia pré-montanha) é de cerca de 4,482 m3/dia. Os cenários que consideram um aumento da retirada de água mostram um consumo não sustentável de águas subterrâneas que leva a uma sobre-exploração do recurso, porque as saídas superam os influxos, causando o esgotamento do armazenamento. Quanto maior o esgotamento, maior o impacto da redução de recarga causada pela mudança climática futura considerada. Este resultado indica que os efeitos combinados de tais fatores podem ter um impacto severo na disponibilidade de águas subterrâneas como encontrado em outras regiões dependentes das águas subterrâneas localizadas em ambientes áridos. Além disso, os cenários que consideram uma redução do caudal de extração mostram que pode ser possível aliviar parcialmente os danos já causados ao aquífero pelas extrações contínuas desde 1974 e pode contrariar parcialmente os impactos das mudanças climáticas na disponibilidade futura de água subterrânea causada por uma diminuição da precipitação (e, portanto, na recarga), se a usina de dessalinização em Taltal aumentar sua capacidade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186. US Geol Surv Circ 1186:79

    Google Scholar 

  • Alley WM, Healy RW, LaBaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296:1985–1990. https://doi.org/10.1126/science.1067123

    Article  Google Scholar 

  • Andermann C, Longuevergne L, Bonnet S, Crave A, Davy P, Gloaguen R (2012) Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat Geosci 5(2):127–132. https://doi.org/10.1038/ngeo1356

    Article  Google Scholar 

  • Anderson M, Low R, Foot S (2002) Sustainable groundwater development in arid, high Andean basins. Geol Soc Lond Spec Publ 193:133–144. https://doi.org/10.1144/GSL.SP.2002.193.01.11

    Article  Google Scholar 

  • Aravena R (1995) Isotope hydrology and geochemistry of northern Chile groundwaters. Bull Inst Fr Études Andines (IFEA) 24(3):495–503

  • Aravena R, Suzuki O, Peña H, Pollastri A, Fuenzalida H, Grilli A (1999) Isotopic composition and origin of the precipitation in northern Chile. Appl Geochem 14:411–422. https://doi.org/10.1016/S0883-2927(98)00067-5

    Article  Google Scholar 

  • Bahlburg H, Breitkreuz C (1991) The evolution of marginal basins in the southern Central Andes of Argentina and Chile during the Paleozoic. J South Am Earth Sci 4:171–188

    Article  Google Scholar 

  • Barrett BS, Campos DA, Veloso JV, Rondanelli R (2016) Extreme temperature and precipitation events in March 2015 in central and northern Chile. J Geophys Res: Atmos 121(9):4563–4580. https://doi.org/10.1002/2016JD024835

    Google Scholar 

  • Bentley HW, Phillips FM, Davis SN, Habermehi MA, Airey PL, Calf GE, Elmore D, Gove, HE, Torgersen T (1986) Chlorine 36 dating of very old groundwater: 1. The Great Artesian Basin, Australia. Water Resour Res 22:1991–2001. https://doi.org/10.1029/WR022i013p01991

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Groundwater 40 (4):340–345. https://doi.org/10.1111/j.1745-6584.2002.tb02511.x

  • Bredehoeft JD, Papadopulos SS, Cooper HH Jr (1982) Groundwater: the water budget myth. In: National Research Council (US) Geophysics Committee Scientific basis of water resource management. Studies in Geophysics. National Academy Press, Washington, DC, pp 51–57

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 2. uniqueness, stability, and solution algorithms. Water Resour Res 22:211–227. https://doi.org/10.1029/WR022i002p00211

    Article  Google Scholar 

  • Cereceda P, Osses P, Larrain H, Farías M, Lagos M, Pinto R, Schemenauer RS (2002) Advective, orographic and radiation fog in the Tarapacá region, Chile. Atmos Res 64:261–271. https://doi.org/10.1016/S0169-8095(02)00097-2

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277. https://doi.org/10.1007/s10040-002-0188-6

    Article  Google Scholar 

  • Custodio E, Jódar J, Herrera C, Custodio-Ayala J, Medina A (2018) Changes in groundwater reserves and radiocarbon and chloride content due to a wet period intercalated in an arid climate sequence in a large unconfined aquifer. J Hydrol 556:427–437

  • Chong G (1977) Contribution to the knowledge of the Domeyko range in the Andes of northern Chile. Geol Rundsch 66(1):374–404. https://doi.org/10.1007/BF01989584

    Article  Google Scholar 

  • Chong G (1994) The nitrate deposits of Chile. In: Tectonics of the Southern Central Andes. Springer, Berlin, pp 303–316

  • DGA (2009) Levantamiento hidrogeológico para el desarrollo de nuevas fuentes de agua en áreas prioritarias de la zona norte de Chile, regiones XV, I, II y III [Hydrogeological characterization for the development of new water supply sources in priority areas in northern Chile, regions XV, I, II and III]. Final report VIII, Pilot system, 1st region: Salar del Huasco. S.I.T. No. 195, DGA, Pontificia Universidad Católica de Chile and Dirección General de Aguas, Santiago, Chile

  • DGA (2012) Diagnóstico plan estratégico para la gestión de los recursos hídricos, región de Antofagasta [Diagnosic strategic plan for the management of water resources, Antofagasta region)]. Dirección General de Aguas, Santiago, Chile

  • Dirección General de Aguas (DGA) (2016) Official hydrometeorologic information and water quality online database. Chilean Gov., Santiago, Chile. http://snia.dga.cl/BNAConsultas/reportes. Accessed Nov 2016

  • Espinoza F, Matthews S, Cornejo P, Venegas C (2011) Carta Catalina, Región de Antofagasta. Carta Geológica de Chile, Serie Geología Básica 129, Servicio Nacional de Geología y Minería, Santiago, Chile, 63 pp

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22. https://doi.org/10.1016/S0031-0182(03)00269-4

    Article  Google Scholar 

  • Garreaud RD, Molina A, Farias M (2010) Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet Sci Lett 292:39–50. https://doi.org/10.1016/j.epsl.2010.01.017

    Article  Google Scholar 

  • Hartley AJ, Chong G (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46. https://doi.org/10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2

    Article  Google Scholar 

  • Herrera C, Custodio E (2014) Origen de las aguas de pequeños manantiales de la costa del norte de Chile, en las cercanías de Antofagasta [Origin of the waters of small springs of the coast of northern Chile, in the vicinity of Antofagasta]. Andean Geol 41:314–341. https://doi.org/10.5027/andgeoV41n2-a03

    Google Scholar 

  • Herrera C, Pueyo JJ, Sáez A, Valero-Garcés BL (2006) Relación de aguas superficiales y subterráneas en el área del lago Chungará y lagunas de Cotacotani, norte de Chile: un estudio isotópico [Relation of surface and groundwater in the area of ​​Lake Chungará and Cotacotani lagoons, northern Chile: an isotopic study]. Rev Geol Chile 33:299–325. https://doi.org/10.4067/S0716-02082006000200005

    Article  Google Scholar 

  • Houston J (2002) Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrol Process 16:3019–3035. https://doi.org/10.1002/hyp.1086

    Article  Google Scholar 

  • Houston J (2006a) Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int J Climatol 26:2181–2198. https://doi.org/10.1002/joc.1359

    Article  Google Scholar 

  • Houston J (2006b) The great Atacama flood of 2001 and its implications for Andean hydrology. Hydrol Process 20:591–610. https://doi.org/10.1002/hyp.5926

    Article  Google Scholar 

  • Houston J (2007) Recharge to groundwater in the Turi Basin, northern Chile: an evaluation based on tritium and chloride mass balance techniques. J Hydrol 334:534–544. https://doi.org/10.1016/j.jhydrol.2006.10.030

  • Houston J (2009) A recharge model for high altitude, arid, Andean aquifers. Hydrol Process 23:2383–2393. https://doi.org/10.1002/hyp.7350

    Article  Google Scholar 

  • Houston J, Hart D (2004) Theoretical head decay in closed basin aquifers: an insight into fossil groundwater and recharge events in the Andes of northern Chile. Q J Eng Geol Hydrogeol 37:131–139. https://doi.org/10.1144/1470-9236/04-007

    Article  Google Scholar 

  • Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464. https://doi.org/10.1002/joc.938

    Article  Google Scholar 

  • Hood JL, Hayashi M (2015) Characterization of snowmelt flux and groundwater storage in an alpine headwater basin. J Hydrol 521:482–497. https://doi.org/10.1016/j.jhydrol.2014.12.041

    Article  Google Scholar 

  • Hublart P, Ruelland D, Dezetter A, Jourde H (2015) Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. Hydrol Earth Syst Sci 19(5):2295–2314. https://doi.org/10.5194/hess-19-2295-2015

    Article  Google Scholar 

  • Jayne RS, Pollyea RM, Dodd JP, et al. (2016) Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile. Hydrogeol J. https://doi.org/10.1007/s10040-016-1454-3

  • Jódar J, Cabrera JA, Martos-Rosillo S, Ruiz-Constan A, Gonzalez-Ramón A, Lambán LJ, Herrera C, Custodio E (2017) Groundwater discharge in high-mountain watersheds: a valuable resource for downstream semi-arid zones—the case of the Bérchules River in Sierra Nevada (southern Spain). Sci Total Environ 593:760–772. https://doi.org/10.1016/j.scitotenv.2017.03.190

    Article  Google Scholar 

  • Johnson E, Yáñez J, Ortiz C, Muñoz J (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol Sci J 55:624–635. https://doi.org/10.1080/02626661003780458

    Article  Google Scholar 

  • Jordan TE, Riquelme R, González G, Herrera C, Godfrey L, Colucci S, Gironás-León J, Gamboa C, Urrutia J, Tapia L, Centella K, Ramos H (2015) Hydrological and geological consequences of the extreme precipitation event of 24–26 March 2015. In: XIV Congreso Geológico Chileno (Conference Proceedings). Sociedad Geológica de Chile, La Serena, Chile, pp 1–4

  • Khakbaz B, Imam B, Hsu K, Sorooshian S (2012) From lumped to distributed via semi-distributed: calibration strategies for semi-distributed hydrologic models. J Hydrol 418:61–77. https://doi.org/10.1016/j.jhydrol.2009.02.021

    Article  Google Scholar 

  • Lenters JD, Cook KH (1999) Summertime precipitation variability over South America: role of the large-scale circulation. Mon Weather Rev 127:409–431. https://doi.org/10.1175/1520-0493(1999)127<0409:SPVOSA>2.0.CO;2

    Article  Google Scholar 

  • Magaritz M, Aravena R, Peña H, Suzuki O, Grilli A (1990) Source of ground water in the deserts of northern Chile: evidence of deep circulation of ground water from the Andes. Ground Water 28:513–517. https://doi.org/10.1111/j.1745-6584.1990.tb01706.x

    Article  Google Scholar 

  • Marinovic S, Smoje T, Maksaev J, Hervé A, Mpodozis M (1995) Hoja aguas blancas: región de Antofagasta [Leaf white waters: region of Antofagasta]. Carta Geológica de Chile Num. 70, Servicio Nacional de Geología y Minería, Santiago, Chile

  • Matthews S, Espinoza F, Cornejo P, Venegas C (2010) Carta Altamira, Región de Antofagasta. Carta Geológica de Chile, Serie Geología Básica 121, Servicio Nacional de Geología y Minería, Santiago, Chile, 66 pp

  • Medina A, Alcolea A, Carrera J, Castro LF (2000) Modelos de flujo y transporte en la geosfera: Codigo Transin IV [Flow and transport modelling in the geosphere: the code TRANSIN IV]. In: IV Jornadas de Investigacion y Desarrollo Tecnologico de Gestion de Residuos Radiactivos de ENRESA. Publ. Tecnica 09/2000, ENRESA, Madrid, pp 195–200

  • Nalpas T, Dabard MP, Ruffet G, Vernon A, Mpodozis C, Loi A, Hérail G (2008) Sedimentation and preservation of the Miocene Atacama gravels in the Pedernales–Chañaral area, northern Chile: climatic or tectonic control? Tectonophysics 459(1):161–173. https://doi.org/10.1016/j.tecto.2007.10.013

    Article  Google Scholar 

  • Naranjo J, Puig A (1984) Taltal and Chañaral Leaves: regions of Antofagasta and Atacama, scale 1:250,000. Carta Geológica de Chile nos. 62–63, Servicio Nacional de Geología y Minería, Santiago, Chile

  • Overmeeren RV (1975) A combination of gravity and seismic refraction measurements, applied to groundwater explorations near Taltal, province of Antofagasta, Chile. Geophys Prospect 23(2):248–258

    Article  Google Scholar 

  • Pokhrel P, Gupta HV (2010) On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resour Res 46(1). https://doi.org/10.1029/2009WR008066

  • Pulido-Velazquez M, Peña-Haro S, García-Prats A, Mocholi-Almudever AF, Henriquez-Dole L, Macian-Sorribes H, Lopez-Nicolas A (2015) Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha oriental system (Spain). Hydrol Earth Syst Sci 19:1677–1693. https://doi.org/10.5194/hess-19-1677-2015

    Article  Google Scholar 

  • Renner S, Aguirre I (2015) Groundwater in the Chilean north: a brief synopsis. In: Agreeing on solutions for more sustainable mine water management. Proceedings of the 10th ICARD & IMWA Annual Conference. Paper 195, GECAMIN, Santiago. https://www.imwa.info/docs/imwa_2015/IMWA2015_Renner_195.pdf. Accessed February 2018

  • Risacher F, Alonso H, Salazar C (1999) Geoquímica de aguas en cuencas cerradas: I, II y III regiones-Chile [Water geochemistry in closed basins: I, II and III regions-Chile]. DGA, Santiago; Universidad Católica del Norte, Antofagasta, Chile; IRD, Marseille, France

  • Rissmann C, Leybourne M, Benn C, Christenson B (2015) The origin of solutes within the groundwaters of a high Andean aquifer. Chem Geol 396:164–181. https://doi.org/10.1016/j.chemgeo.2014.11.029

    Article  Google Scholar 

  • Rojas R, Dassargues A (2007) Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeol J 15:537–551. https://doi.org/10.1007/s10040-006-0084-6

    Article  Google Scholar 

  • Rundel PW, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso: J Syst Evol Bot 13(1), Article 2. http://scholarship.claremont.edu/aliso/vol13/iss1/2

  • Sáez A, Godfrey LV, Herrera C, Chong G, Pueyo JJ (2016) Timing of wet episodes in Atacama Desert over the last 15 ka: the groundwater discharge deposits (GWD) from Domeyko range at 25° S. Quat Sci Rev 145:82–93. https://doi.org/10.1016/j.quascirev.2016.05.036

    Article  Google Scholar 

  • Salas I, Herrera C, Luque JA, Delgado J, Urrutia J, Jordan T (2016) Recent climatic events controlling the hydrological and the aquifer dynamics at arid areas: the case of Huasco River watershed, northern Chile. Sci Total Environ 571:178–194. https://doi.org/10.1016/j.scitotenv.2016.07.132

    Article  Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120. https://doi.org/10.1007/s10040-001-0173-5

    Article  Google Scholar 

  • Sapriza-Azuri G, Jódar J, Carrera J, Gupta HV (2015) Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics. J Hydrol 529:1701–1712. https://doi.org/10.1016/j.jhydrol.2015.08.015

    Article  Google Scholar 

  • Schulz N, Boisier JP, Aceituno P (2012) Climate change along the arid coast of northern Chile. Int J Climatol 32(12):1803–1814. https://doi.org/10.1002/joc.2395

    Article  Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7(4):270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)

    Article  Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43. https://doi.org/10.1016/S0022-1694(00)00263-8

    Article  Google Scholar 

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280

    Google Scholar 

  • UNDP (1977) Desarrollo de los recursos de agua en el Norte Grande, Chile [Development of water resources in the Norte Grande, Chile]. DGA, Santiago, Chile, pp 72. http://documentos.dga.cl/REH712v11.djvu. Accessed 8 Jan 2018

  • USGS (2015) EarthExplorer. US Geological Survey, Reston, VA. https://earthexplorer.usgs.gov/. Accessed 15 Dec 2015

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370:207–213. https://doi.org/10.1016/j.jhydrol.2009.03.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and reviewers (Alan M. MacDonald, Andrew Hughes and one anonymous reviewer) for their valuable comments, which improved the quality of the manuscript.

Funding

This research was funded by the Anillo project ACT 1203 of the CONICYT of Chile government and CONICYT-PCHA/Doctorado Nacional/2015-21150951 PhD grant to J.U., and CONICYT-PCHA/Doctorado Nacional/2016-21161345 PhD grant to H.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Urrutia.

Electronic supplementary material

ESM 1

(PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia, J., Jódar, J., Medina, A. et al. Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile. Hydrogeol J 26, 1989–2007 (2018). https://doi.org/10.1007/s10040-018-1740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1740-3

Keywords

Navigation