Skip to main content
Log in

On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A one-dimensional model of radiation fog with detailed microphysics is presented. Aerosols and cloud droplets are treated in a joint two-dimensional size distribution. Radiative fluxes are calculated as functions of the radiative properties of the time-dependent particle spectra. The droplet growth equation is solved by considering radiative effects. Turbulence is treated by means of a higher order closure model. The interaction between the atmosphere and the earth's surface is explicitly simulated.

Three numerical sensitivity studies are performed to investigate the impact of the different physico-chemical properties of urban, rural and maritime aerosols on fog formation. Numerical results elucidate that depending on the aerosol type used, the resulting fog events are completely different. This is particularly true for the times of fog formation and dissipation as well as for the liquid water content and supersaturations within the fogs. In the activated part of the particle spectra, the aerosol mass is very inhomogeneously distributed. The maxima of the curves do not coincide with the maxima of the corresponding liquid water distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arganza, Garcia, Fernandez Diaz, J. M., Garzon Ruiperez, L., and Lopez, A.: 1988, ‘Concentration Sources and Particle Size Distribution of the Atmospheric Aerosol of the Oviedo Urban Nucleus (Spain)’, Atmos. Envir. 22, 2863–2869.

    Google Scholar 

  • Ayers, G. P. and Gras, J. L.: 1983, ‘The Concentration of Ammonia in Southern Ocean Air’, J. Geophys. Res. 88, 10,655–10,659.

    Google Scholar 

  • Barkstrom, B. R.: 1978, ‘Some Effects of 8–12 Μm Radiant Energy Transfer on the Mass and Heat Budgets of Cloud Droplets’, J. Atmos. Sci. 35, 665–673.

    Google Scholar 

  • Beard, K. V.: 1976, ‘Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft’, J. Atmos. Sci. 33, 851–864.

    Google Scholar 

  • Bott, A.: 1989a, ‘A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes’, Mon. Wea. Rev. 117, 1006–1015.

    Google Scholar 

  • Bott, A.: 1989b, ‘Reply’, Mon. Wea. Rev. 117, 2633–2636.

    Google Scholar 

  • Bott, A., Sievers, U., and Zdunkowski, W.: 1990, ‘A Radiation Model with a Detailed Treatment of the Interaction Between Radiative Transfer and Fog Microphysics’, J. Atmos. Sci. 47, 2153–2166.

    Google Scholar 

  • Clapp, R. and Hornberger, G.: 1978, ‘Empirical Relations for Some Soil Hydraulic Properties’, Water Resour. Res. 14, 601–604.

    Google Scholar 

  • Clarke, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models’, Austr. Meteorol. Mag. 18, 51–73.

    Google Scholar 

  • Davies, R.: 1985, ‘Response of Cloud Supersaturation to Radiative Forcing’, J. Atmos. Sci. 42, 2820–2825.

    Google Scholar 

  • Forkel, R., Sievers, U., and Zdunkowski, W.: 1987, ‘Fog Modelling with a New Treatment of the Chemical Equilibrium Condition’, Beitr. Phys. Atmos. 60, 340–360.

    Google Scholar 

  • Gerber, H. E.: 1981, ‘Microstructure of Radiation Fog’, J. Atmos. Sci. 38, 454–458.

    Google Scholar 

  • Hänel, G.: 1976, ‘The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air’, Adv. Geoph. 19, 73–188.

    Google Scholar 

  • Hale, G. M. and Querry, M. R.: 1973, ‘Optical Constants of Water in the 200-nm to 200-Μm Wavelength Region’, Appl. Opt. 12, 555–563.

    Google Scholar 

  • Hall, W. D.: 1980, ‘A Detailed Microphysical Model within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results’, J. Atmos. Sci. 37, 2486–2507.

    Google Scholar 

  • Jaenicke, R.: 1988, ‘Aerosol Physics and Chemistry’, in Landolt-Boernstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Springer V 4b, 391–457.

  • Jiusto, J. E. and Lala, G. G.: 1983, ‘Radiation Fog Field Programs — Recent Studies’, ASRC-SUNY, Pub. No. 869.

  • McCumber, M. C. and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model’, J. Geophys. Res. 86, 9929–9938.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geoph. Space Phys. 20, 851–875.

    Google Scholar 

  • Meszaros, A. and Vissy, K.: 1974, ‘Concentration, Size Distribution and Chemical Nature of Atmospheric Aerosol Particles in Remote Ocean Areas’, J. Aerosol Sci. 5, 101–109.

    Google Scholar 

  • Parungo, F. P., Nagamoto, C. T., Madel, R., Rosinski, J., and Haagenson, P. L.: 1987, ‘Marine Aerosols in Pacific Upswelling Regions’, J. Aerosol Sci. 18, 277–290.

    Google Scholar 

  • Parungo, F. P., Nagamoto, C. T., Rosinski, J., and Haagenson, P. L.: 1986, ‘A Study of Marine Aerosols over the Pacific Ocean’, J. Atmos. Chem. 4, 199–226.

    Google Scholar 

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, Orlando, 612 pp.

    Google Scholar 

  • Pruppacher, H. R. and Klett, J. D.: 1980, Microphysics of Clouds and Precipitation, D. Reidel Publishing Company, Dordrecht, Holland, 714 pp.

    Google Scholar 

  • Pueschel, R. F., Boatman, J. F., and Artz, R. S.: 1988, ‘Aerosols over the Western Atlantic: Scale Heights, Concentrations and Fluxes’, Atmos. Environ. 22, 2371–2380.

    Google Scholar 

  • Roach, W. T.: 1976a, ‘On Some Quasi-Periodic Oscillations Observed During a Field Investigation of Radiation Fog’, Quart. J. Roy. Meteorol. Soc. 102, 355–359.

    Google Scholar 

  • Roach, W. T.: 1976b, ‘On the Effect of Radiative Exchange on the Growth by Condensation of a Cloud or Fog Droplet’, Quart. J. Roy. Meteorol. Soc. 102, 361–372.

    Google Scholar 

  • Roache, P. J.: 1982, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 446 pp.

    Google Scholar 

  • Shettle, E. P. and Fenn, R. W.: 1979, ‘Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties’, Project 7670, Air Force Geoph. Lab., Massachusetts.

    Google Scholar 

  • Warneck, P.: 1988, Chemistry of the Natural Atmosphere, International Geophysics Series, 41, Academic Press, New York, 753 pp.

    Google Scholar 

  • Winkler, P.: 1974, ‘Die relative Zusammensetzung des Atmosphärischen Aerosols in Stoffgruppen’, Meteorol. Rdsch. 27, 129–136.

    Google Scholar 

  • Woodcock, A. H.: 1978, ‘Marine Fog Droplets in Salt Nuclei-Part I’, J. Atmos. Sci. 35, 241–268.

    Google Scholar 

  • Zdunkowski, W. G., Panhans, W.-G., Welch, R. M., and Korb, G. J.: 1982, ‘A Radiation Scheme for Circulation and Climate Models’, Beitr. Phys. Atmos. 55, 215–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, A. On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorol 56, 1–31 (1991). https://doi.org/10.1007/BF00119960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119960

Keywords

Navigation