Skip to main content
Log in

Processing and quality control of flux data during LITFASS-2003

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain—Fluxes between Atmosphere and Surface: a long term Study). Eddy-covariance measurements of the latent heat flux were the main focus of the QA/QC efforts. The results of a turbulence sensor intercomparison experiment showed deviations between the different eddy-covariance systems on the order of 15%, or less than 30 W m−2, for the latent heat flux and 5%, or less than 10 W m−2, for the sensible heat flux. In order to avoid uncertainties due to the post-processing of turbulence data, a comprehensive software package was used for the analysis of experimental data from LITFASS-2003, including all necessary procedures for corrections and quality control. An overview of the quality test results shows that for most of the days more than 80% of the available latent heat flux data are of high quality so long as there are no instrumental problems. The representativeness of a flux value for the target land-use type was analysed using a stochastic footprint model. Different methods to calculate soil heat fluxes at the surface are discussed and a sensitivity analysis is conducted to select the most robust method for LITFASS-2003. The lack of energy balance closure, which was found for LITFASS-2003, can probably be attributed to the presence of low-frequency flux contributions that cannot be resolved with an averaging time of 30 min. Though the QA/QC system has been developed for the requirements of LITFASS-2003, it can also be applied to other experiments dealing with similar objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold K, Ziemann A, Raabe A, Spindler G (2004) Acoustic tomography and conventional meteorological measurements over heterogeneous surfaces. Meteorol Atmos Phys 85:175–186

    Article  Google Scholar 

  • Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment. Theor Appl Climatol 73:19–34

    Article  Google Scholar 

  • Beyrich F, Leps J.-P, Mauder M, Foken T, Weisensee U, Bange J, Zittel P, Huneke S, Lohse H, Mengelkamp H.-T, Bernhofer C, Queck R, Meijninger WML, Kohsiek W, Lüdi A, Peters G, Münster H (2006) Area-averaged surface fluxes over the heterogeneous LITFASS area from measurements. Boundary-Layer Meteorol (this issue)

  • Beyrich F, Mengelkamp H.-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol (this issue)

  • Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University Press, New York, 290 pp

    Google Scholar 

  • Burns SP, Sun J, Delany AC, Semmer SR, Oncley SP, Horst TW (2003) A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. J Atmos Oceanic Tech 20:348–361

    Article  Google Scholar 

  • Culf AD, Foken T, Gash JHC (2004) The energy balance closure problem. In: Kabat P, Claussen M. (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin, Heidelberg, pp 159–166

    Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol 47:55–69

    Article  Google Scholar 

  • Dyer AJ (1981) Flow distortion by supporting structures. Boundary-Layer Meteorol 20:363–372

    Article  Google Scholar 

  • Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Bradley EF, Denmead OT, Tsvang LR, Volkov YA, Koprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M, Shaw W (1982) An international turbulence comparison experiment (ITCE-76). Boundary-Layer Meteorol 24:181–209

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Foken T (1999) Comparison of the sonic anemometer Young Model 81000 during VOITEX-99. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 8:12 pp. (Print, ISSN 1614–8916; Internet, ISSN 1614–8926)

  • Foken T (2003) Angewandte Meteorologie. Mikrometeorologische Methoden. Springer, Heidelberg, 289 pp

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology. A guide for surface flux measurements. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Raasch S, de Bruin HAR, Meijninger WML, Bange J (2006) Attempt to close the energy balance for the LITFASS-2003 experiment. In: 17th symposium on boundary layers and turbulence. San Diego, CA, Am Meteorol Soc paper 1.11

  • Foken T, Oncley SP (1995) Workshop on instrumental and methodical problems of land surface flux measurements. Bull Amer Meteorol Soc 76:1191–1193

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Weisensee U, Kirzel H.-J, Thiermann V (1997) Comparison of new-type sonic anemometers. In: 12th symposium on boundary layer and turbulence, Vancouver, BC, Amer Meteorol Soc, Boston, pp 356–357

  • Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2005) Some aspects of the energy balance closure problem. Geophys Res Abs 7

  • Friehe CA (1991) Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J Geophys Res 96:8593–8609

    Article  Google Scholar 

  • Fuchs M (1986) Heat flux, In: Klute A (ed) Methods of Soil analysis, part 1: Physical and mineralogical methods. Madison/WI, pp 957–968

  • Fuehrer PL, Friehe CA (2002) Flux corrections revisited. Boundary-Layer Meteorol 102:415–457

    Article  Google Scholar 

  • Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric For Meteorol 127:175–188

    Article  Google Scholar 

  • Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of footprint-based approach for the characterisation of complex measurement sites. Boundary-Layer Meteorol DOI: 10.1007/s10546-005-6435-3

  • Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol, 341–356

  • Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4:153–157

    Article  Google Scholar 

  • ISO: 1993, Statistics—vocabulary and symbols—Part 1: probability and general statistical terms, International Organization for Standardization, Geneva, Switzerland, ISO 3534–1, 61 pp

  • Jegede OO, Foken T (1999) A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns. Theor Appl Climatol 62:31–41

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, NY, 289 pp

    Google Scholar 

  • Kaimal JC, Gaynor JE, Zimmerman HA, Zimmerman GA (1990) Minimizing flow distortion errors in a sonic anemometer. Boundary-Layer Meteorol 53:103–115

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Quart J Roy Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110:381–404

    Article  Google Scholar 

  • Kanemasu ET, Verma SB, Smith EA, Fritschen LY, Wesely M, Fild RT, Kustas WP, Weaver H, Steawart YB, Geney R, Panin GN, Moncrieff JB (1992) Surface flux measurements in FIFE: An overview. J Geophys Res 97:18547–18555

    Google Scholar 

  • Kasten F (1985) Maintenance, calibration and comparison. Instruments and observ. Methods, Geneve, WMO Report vol 23, pp 65–84

  • Lee X, Massman W, Law BE (eds) (2004) Handbook of micrometeorology. A guide for surface flux measurement and analysis. Kluwer Academic Press, Dordrecht, 250 pp

    Google Scholar 

  • Lenschow DH, Kristensen L (1985) Uncorrelated noise in turbulence measurements. J Atmos Oceanic Tech 2:68–81

    Article  Google Scholar 

  • Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atmos Oceanic Tech 11:661–673

    Article  Google Scholar 

  • Liebethal C (2003) Strahlungsmessgerätevergleich während des Experiments STINHO-1. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse vol 21, 28 pp (Print, ISSN 1614–8916)

  • Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109:99–106

    Article  Google Scholar 

  • Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes. Corrigendum. Boundary-Layer Meteorol 113:301

    Article  Google Scholar 

  • Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agric For Meteorol 132:253–262

    Article  Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468

    Article  Google Scholar 

  • Mahli Y, McNoughton KG, von Randow C (2004) Low frequency atmospheric transport and surface flux measurements. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology. A guide for surface flux measurement and analysis, Kluwer, Dordrecht, pp 101–118

    Google Scholar 

  • Mauder M (2002) Auswertung von Turbulenzmessgerätevergleichen unter besonderer Berücksichtigung von EBEX-2000. Master Thesis, Abt. Mikrometeorologie, Universität Bayreuth, Bayreuth, 86 pp

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 26:44 pp (Print, ISSN 1614–8916; Internet, ISSN 1614–8926)

  • Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, de Bruin HAR (2006) Scintillometer fluxes of sensible and latent heat over a heterogeneous land surface - a contribution to LITFASS-2003. Boundary-Layer Meteorol (this issue)

  • Mengelkamp H.-T, Beyrich F, Heinemann G, Ament F, Bange J, Berger FH, Bösenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen K.-P, Kerschgens M, Kohsiek W, Leps J.-P, Liebethal C, Mauder M, Meijninger WML, Raasch S, Simmer C, Spieß T, Tittebrand A, Uhlenbrock J, Zittel P (2006) Evaporation over a heterogeneous land surface: the EVA_GRIPS project. Bull Amer Meteorol Soc (in press)

  • Miyake M, Stewart RW, Burling HW, Tsvang LR, Koprov BM, Kuznetsov OA (1971) Comparison of acoustic instruments in an atmospheric turbulent flow over water. Boundary-Layer Meteorol 2:228–245

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol 188–189:589–611

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35

    Article  Google Scholar 

  • Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Amer Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  • Oncley SP (1989) Flux parametrization techniques in the atmospheric surface layer. Ph.D. Thesis, University of California, Irvine, CA, 202 pp

  • Oncley SP, Foken T, Vogt R, Bernhofer C, Kohsiek W, Liu H, Pitacco A, Grantz D, Ribeiro L, Weidinger T (2002) The energy balance experiment EBEX-2000. In: 15th symposium on boundary layer and turbulence, Wageningen, NL, Am Meteorol Soc 1–4

  • Philipona R, Fröhlich C, Betz C (1995) Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Appl Optics 34:1598–1605

    Article  Google Scholar 

  • Raabe A (1983) On the relation between the drag coefficient and fetch above the sea in the case of off-shore wind in the near shore zone. Z Meteorol 33:363–367

    Google Scholar 

  • Rannik U, Markkanen T, Raittila J, Hari P, Vesala T (2003) Turbulence statistics inside and over forest: Influence on footprint prediction. Boundary-Layer Meteorol 109:163–189

    Article  Google Scholar 

  • Sakai RK, Fitzjarrald DR, Moore KE (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192

    Article  Google Scholar 

  • Savelyev SA, Taylor PA (2005) Internal boundary layers: I. Height formulae for neutral and diabatic flows. Boundary-Layer Meteorol 115:1–25

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Academic Publishers, 666 pp

    Google Scholar 

  • Tanner BD, Campbell GS (1985) A krypton hygrometer for measurement of atmospheric water vapor concentration. In: Moisture and humidity. Instrument Society of America, Research Triangle Park, NC, 609–612

  • Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, NY, pp 945–952

    Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  Google Scholar 

  • Tsvang LR, Koprov BM, Zubkovskii SL, Dyer AJ, Hicks B, Miyake M, Stewart RW, McDonald JW (1973) A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol 3:499–521

    Article  Google Scholar 

  • Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J, Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol 31:325–348

    Article  Google Scholar 

  • Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol 55:141–160

    Article  Google Scholar 

  • van Dijk A (2002) Extension to 3D of “The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface” by Kristensen and Fitzjarrald. J Atmos Oceanic Tech 19:80–82

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Weisensee U, Beyrich F, Leps J.-P (2003) Integration of humidity fluctuation sensors into the Lindenberg boundary layer measurement facilities: Experiences, problems, and future requirements. In: 12th Symposium on meteorological observations and instrumentation. Long Beach, CA, USA, paper 14.1, pp 275–278

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Meteorol 99:127–150

    Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243

    Article  Google Scholar 

  • Wyngaard JC, Zhang SF (1985) Transducer-shadow effects on turbulence spectra measured by sonic anemometers. J Atmos Oceanic Tech 2:548–558

    Article  Google Scholar 

  • Zhang SF, Wyngaard JC, Businger JA, Oncley SP (1986) Response characteristics of the U.W. sonic anemometer. J Atmos Oceanic Tech 2:548–558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mauder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauder, M., Liebethal, C., Göckede, M. et al. Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol 121, 67–88 (2006). https://doi.org/10.1007/s10546-006-9094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9094-0

Keywords

Navigation