Skip to main content
Log in

Modelling the importance of sediment bacterial carbon for profundal macroinvertebrates along a lake nutrient gradient

  • Functional Ecology and Interactions
  • Published:
Netherland Journal of Aquatic Ecology Aims and scope Submit manuscript

Abstract

In dimictic, temperate lakes little is known about the quantitative importance of trophic coupling between pelagic and profundal communities. Although it is a generally accepted paradigm that profundal secondary production is dependent on autochthonous pelagic production (primarily diatoms), the importance of interactions between phytodetrital inputs, sediment bacteria, and macroinvertebrates are still not well understood. In this study, we used theoretical models to estimate macroinvertebrate carbon requirement (production + respiration) and bacterial production for lakes of different trophic categories. Comparisons of estimates show that the importance of bacterial production as a carbon source for benthic macroinvertebrates is inversely related to lake trophic state. Assuming that infauna assimilates 50% of ingested bacterial carbon, this food source could account for between 47% (oligotrophic lakes) and 2% (hypertrophic lakes) of their carbon demand. These calculations indicate that bacterial carbon should not be an important C-resource for profundal macroinvertebrates of eutrophic and hypertrophic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLER, R.C., 1988. Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures. in: T. H. Blackburn and J. Sørensen, eds., Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd. 301–338.

  • BAKER, J.H. and L.A. BRADNAM, 1976. The role of bacteria in the nutrition of aquatic detritivores. Oecol. (Berl.), 24: 95–104.

    Google Scholar 

  • BOSTRÖM, B. and E. TÖRNBLOM, 1990. Bacterial production, heat production and ATP-turnover in shallow marine sediment. Thermochimica Acta, 172: 147–156.

    Google Scholar 

  • BRETTUM, P., 1989. Alger som indikator pa vannkvalitet i norske innsjøer. Norsk institutt for vannforskning-Rapport.

  • BRINKHURST, R.O., 1974. The benthos of lakes. Macmillan Press, London.

    Google Scholar 

  • BRUNBERG, A.K. and B. BOSTRÖM, 1992. Coupling between benthic biomass ofMicrocystis and phosphorus release from the sediments of a highly eutrophic lake. Hydrobiologia, 235/236: 375–385.

    Google Scholar 

  • VAN DE BUND, W.J., W. GOEDKOOP and R.K. JOHNSON, submitted. The effects of profundal deposit-feeder activity on sediment bacterial production and abundance.

  • CAMMEN, L.M., 1980. The significance of microbial carbon in the nutrition of the deposit feeding polychaeteNereis succinea. Mar. Biol., 51: 9–20.

    Google Scholar 

  • COLE, J.J., S. FINDLAY and M.L. PACE, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43: 1–10.

    Google Scholar 

  • FINDLAY, S., J.L. MEYER and P.J. SMITH, 1984. Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecol. (Berl.), 63: 38–42.

    Google Scholar 

  • GOEDKOOP, W. and R.K. JOHNSON, submitted. Exploitation of sediment bacterial carbon by the amphipogMonoporeia affinis (Lindström).

  • GRAF, G., 1989. Benthic-pelagic coupling in a deep sea benthic community. Nature, 341: 271–278.

    Google Scholar 

  • HÅKANSON, L., 1984. On the relationship between lake trophic level and lake sediments. Water Res., 18: 303–314.

    Google Scholar 

  • HÅKANSON, L. and M. JANSSON, 1983. Principles of lake sedimentology. Springer, Berlin.

    Google Scholar 

  • HANSON, J.M. and R.H. PETERS, 1984. Empirical prediction of crustacean zooplankton biomass and profundal biomass in lakes. Can. J. Fish. Aquat. Sci., 41: 439–445.

    Google Scholar 

  • HUTCHINSON, G.E., 1967. A treatise on limnology. II. Introduction to lake biology and the limnoplankton. New York.

  • JOHANNSSON, O.E. and J.L. BEAVER, 1983. Role of algae in the diet ofChironomus plumosus F.semireductus from the Bay of Quinte, Lake Ontario. Hydrobiologia, 107: 237–247.

    Google Scholar 

  • JOHNSON, R.K., 1985. Feeding efficiencies ofChironomus plumosus (L.) andChironomus anthracinus Zett. in mesotrophic Lake Erken. Freshw. Biol., 15: 605–612.

    Google Scholar 

  • JOHNSON, R.K., B. BOSTRÖM and W. VAN DE BUND, 1989. Interactions betweenChironomus plumosus (L.) and the microbial community in surficial sediments of a shallow, eutrophic lake. Limnol. Oceanogr., 34: 992–1003.

    Google Scholar 

  • JHNSON, R.K. and T. WIEDERHOLM, submitted. The importance of spring diatoms for long tem demographic oscillations ofMonoporeia affinis (Lindström).

  • JÓNASSON, P.M., C. LINDEGAARD and K. HAMBURGER, 1990. Energy budget of Lake Esrom, Denmark. Verh. Internat. Verein. Limnol., 24: 632–640.

    Google Scholar 

  • JÖRGENSEN, S.E., 1979. Handbook of environmental data and ecological parameters. Pergamon.

  • KRISTENSEN, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: Microbial activities and fluxes. In: T. H. Blackburn and J. Sorensen, eds., Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd.

  • LOPEZ, G. and R. ELMGREN, 1989. Feeding depths and organic absorption for the deposit feeding amphipodsPontoporeia affinis andPontoporeia femorata. Limnol. Oceanogr., 34: 982–991.

    Google Scholar 

  • MEYER-REIL, L.A., 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol., 53: 1748–1755.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. Paris.

  • PHILLIPS, N.W., 1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sc., 35: 283–298.

    Google Scholar 

  • RODINA, A.G., 1949. The role of bacteria in the feeding of tendipedid larvae, Fish. Res. Board Can. Transl. Ser. no. 142.

  • STRAYER, D.L., 1991. Perspectives on the size structure of lacustrine zoobenthos, its causes, and its consequences. J. N. Am. Benthol. Soc., 10: 210–221.

    Google Scholar 

  • TAGHON, G.L., 1988. The benefits and costs of deposit feeding in the polychaeteAbarenicola pacifica. Limnol. Oceanogr., 33: 1166–1175.

    Google Scholar 

  • TAGHON, G.L., and P.A. JUMARS, 1984. Variable ingestion rate and its role in optimal foraging behavior of marine deposit feeders. Ecol., 65: 549–558.

    Google Scholar 

  • WATERS, T.F., 1969. The turnover ratio in production ecology of freshwater invertebrates. Am. Nat., 103: 173–185.

    Google Scholar 

  • WATERS, T.F., 1977. Secondary production in inland waters. Adv. Ecol. Res., 10: 91–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedkoop, W., Johnson, R.K. Modelling the importance of sediment bacterial carbon for profundal macroinvertebrates along a lake nutrient gradient. Netherlands Journal of Aquatic Ecology 26, 477–483 (1992). https://doi.org/10.1007/BF02255278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255278

Keywords

Navigation