Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous reduction and C–H borylation of arenes mediated by uranium(III) disproportionation

Abstract

Transition-metal–arene complexes such as bis(benzene)chromium Cr(η6-C6H6)2 are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX3 (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX2 to bind and reduce arenes, forming inverse sandwich molecules [X2U(µ-η66-arene)UX2] and a UX4 by-product. Calculations and kinetic studies suggest a ‘cooperative small-molecule activation’ mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX3 are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C–H bond functionalization methodology converting C–H to C–B bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Storage of arene solutions of UX3 (X = aryloxide, amide) results in the spontaneous formation of the inverse sandwich arene complex bound to UX2 moieties by two-electron reductive activation of the arene solvent.
Figure 2
Figure 3: Reactions of UX3 with dihydroanthracene to test for X radicals and reactions that demonstrate that fused arenes such as naphthalene can bind and influence the reaction rate, and reactions with transition metal (η-arene) complexes.
Figure 4: Thermal ellipsoid drawings of the molecular structures of [{X2U}2(µ-arene)] complexes.
Figure 5: Four different calculated mechanisms of formation of [{X2U}2(µ-η66-C6H6)] from UX3 and benzene.
Figure 6: Two different computed mechanisms of borylation of [{(PhO)2U}2(µ-η66-C6H6)].

Similar content being viewed by others

References

  1. Seyferth, D. Bis(benzene)chromium. 2. Its discovery by E. O. Fischer and W. Hafner and subsequent work by the research groups of E. O. Fischer, H. H. Zeiss, F. Hein, C. Elschenbroich, and others. Organometallics 21, 2800–2820 (2002).

    Article  CAS  Google Scholar 

  2. Jonas, K., Wiskamp, V., Tsay, Y. H. & Kruger, C. Metal-bridging benzene in a binuclear hydridovanadium complex. J. Am. Chem. Soc. 105, 5480–5481 (1983).

    Article  CAS  Google Scholar 

  3. Astruc, D. Modern Arene Chemistry (Wiley, 2002).

  4. Zabula, A. V., Filatov, A. S., Spisak, S. N., Rogachev, A. Y. & Petrukhina, M. A. A main group metal sandwich: five lithium cations jammed between two corannulene tetraanion decks. Science 333, 1008–1011 (2011).

    Article  CAS  Google Scholar 

  5. Maslyuk, V. V. et al. Organometallic benzene–vanadium wire: a one-dimensional half-metallic ferromagnet. Phys. Rev. Lett. 97, 097201, (2006).

    Article  Google Scholar 

  6. Troyanov, S. I. et al. The crystal and molecular structure of titanium(II) π-arene chloroaluminate complexes (η6-arene)TiAl2Cl8 (arene is C6H6 or C6H5CH3). Koord. Khim. 22, 723–726 (1996).

    Google Scholar 

  7. Cesari, M., Pedretti, U., Zazzetta, Z., Lugli, G. & Marconi, W. Synthesis and structure of a p-arene complex of uranium(III)–aluminum chloride. Inorg. Chim. Acta 5, 439–444 (1971).

    Article  CAS  Google Scholar 

  8. Van der Sluys, W. G., Burns, C. J., Huffman, J. C. & Sattelberger, A. P. Uranium alkoxide chemistry.1. Synthesis and the novel dimeric structure of the 1st homoleptic uranium(III) aryloxide complex. J. Am. Chem. Soc. 110, 5924–5925 (1988).

    Article  CAS  Google Scholar 

  9. Baudry, D. et al. Arene uranium borohydrides: synthesis and crystal structure of (C6Me6)U(BH4)3 . J. Organomet. Chem. 371, 155–162 (1989).

    Article  CAS  Google Scholar 

  10. Infante, I. et al. Experimental and theoretical evidence for U(C6H6) and Th(C6H6) complexes. J. Phys. Chem. A 111, 11996–12000 (2007).

    Article  CAS  Google Scholar 

  11. Hong, G. Y., Schautz, F. & Dolg, M. Ab initio study of metal-ring bonding in the bis(η6-benzene)lanthanide and -actinide complexes M(C6H6)2 (M = La, Ce, Nd, Gd, Tb, Lu, Th, U). J. Am. Chem. Soc. 121, 1502–1512 (1999).

    Article  CAS  Google Scholar 

  12. Katzin, L. I. Possible f-shell covalency in the actinide elements. Nature 166, 605–605 (1950).

    Article  Google Scholar 

  13. Morss, L. R., Edelstein, N. & Fuger, J. The Chemistry of the Actinide and Transactinide Elements 3rd edn (Springer, 2006).

  14. Kozimor, S. A. et al. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 131, 12125–12136 (2009).

    Article  CAS  Google Scholar 

  15. Arnold, P. L. et al. Covalency in Ce(IV) and U(IV) halide and N-heterocyclic carbene bonds. Chem. Eur. J. 16, 9623–9629 (2010).

    Article  CAS  Google Scholar 

  16. Diaconescu, P. L., Arnold, P. L., Baker, T. A., Mindiola, D. J. & Cummins, C. C. Arene-bridged diuranium complexes: inverted sandwiches supported by delta backbonding. J. Am. Chem. Soc. 122, 6108–6109 (2000).

    Article  CAS  Google Scholar 

  17. Diaconescu, P. L. & Cummins, C. C. μ-η66-Arene-bridged diuranium hexakisketimide complexes isolable in two states of charge. Inorg. Chem. 51, 2902–2916 (2012).

    Article  CAS  Google Scholar 

  18. Evans, W. J., Kozimor, S. A., Ziller, J. W. & Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η66-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 126, 14533–14547 (2004).

    Article  CAS  Google Scholar 

  19. Evans, W. J., Traina, C. A. & Ziller, J. W. Synthesis of heteroleptic uranium (μ-η66-C6H6)2− sandwich complexes via facile displacement of (η5-C5Me5)1− by ligands of lower hapticity and their conversion to heteroleptic bis(imido) compounds. J. Am. Chem. Soc. 131, 17473–17481 (2009).

    Article  CAS  Google Scholar 

  20. Monreal, M. J., Khan, S. I., Kiplinger, J. L. & Diaconescu, P. L. Molecular quadrangle formation from a diuranium μ-η66-toluene complex. Chem. Commun. 47, 9119–9121 (2011).

    Article  CAS  Google Scholar 

  21. Mills, D. P. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nature Chem. 3, 454–460 (2011).

    Article  CAS  Google Scholar 

  22. Patel, D. et al. A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).

    Article  CAS  Google Scholar 

  23. Rinehart, J. D., Harris, T. D., Kozimor, S. A., Bartlett, B. M. & Long, J. R. Magnetic exchange coupling in actinide-containing molecules. Inorg. Chem. 48, 3382–3395 (2009).

    Article  CAS  Google Scholar 

  24. Mazzanti, M. Uranium memory. Nature Chem. 3, 426–427 (2011).

    Article  CAS  Google Scholar 

  25. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008).

    Article  CAS  Google Scholar 

  26. Mansell, S. M., Kaltsoyannis, N. & Arnold, P. L. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J. Am. Chem. Soc. 133, 9036–9051 (2011).

    Article  CAS  Google Scholar 

  27. Mortensen, J. & Heinze, J. The electrochemical reduction of benzene—1st direct determination of the reduction potential. Angew. Chem. Int. Ed. Engl. 23, 84–85 (1984).

    Article  Google Scholar 

  28. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  Google Scholar 

  29. Moritz, A., Cao, X. & Dolg, M. Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 118, 845–854 (2007).

    Article  CAS  Google Scholar 

  30. Castro, L., Lam, O. P., Bart, S. C., Meyer, K. & Maron, L. Carbonate formation from CO2 via oxo versus oxalate pathway: theoretical investigations into the mechanism of uranium-mediated carbonate formation. Organometallics 29, 5504–5510 (2010).

    Article  CAS  Google Scholar 

  31. Castro, L., Yahia, A. & Maron, L. Are 5f electrons really active in organoactinide reactivity? Some insights from DFT studies. ChemPhysChem 11, 990–994 (2010).

    Article  CAS  Google Scholar 

  32. Labouille, S., Nief, F. & Maron, L. Theoretical treatment of redox processes involving lanthanide(II) compounds: reactivity of organosamarium(II) and organothulium(II) complexes with CO2 and pyridine. J. Phys. Chem. A 115, 8295–8301 (2011).

    Article  CAS  Google Scholar 

  33. Kaltsoyannis, N. Recent developments in computational actinide chemistry. Chem. Soc. Rev. 32, 9–16 (2003).

    Article  CAS  Google Scholar 

  34. Andersen, R. A. Tris((hexamethyldisilyl)amido)uranium(III): preparation and coordination chemistry. Inorg. Chem. 18, 1507–1509 (1979).

    Article  CAS  Google Scholar 

  35. Mansell, S. M., Perandones, B. F. & Arnold, P. L. New U(III) and U(IV) silylamides and an improved synthesis of NaN(SiMe2R)2 (R = Me, Ph). J. Organomet. Chem. 695, 2814–2821 (2010).

    Article  CAS  Google Scholar 

  36. Arnold, P. L. Uranium-mediated activation of small molecules. Chem. Commun. 47, 9005 (2011).

    Article  CAS  Google Scholar 

  37. Wan, Y.-P., O'Brien, D. H. & Smentowski, F. J. Anion radicals of phenylsilanes. J. Am. Chem. Soc. 94, 7680–7686 (1972).

    Article  CAS  Google Scholar 

  38. Hill, T. G., Godfroid, R. A., White, J. P. & Shore, S. G. Reduction of BH3.THF by alkali-metal (K, Rb, Cs) and ytterbium mercury amalgams to form salts of [B3H8] — a simple procedure for the synthesis of tetraborane. Inorg. Chem. 30, 2952–2954 (1991).

    Article  CAS  Google Scholar 

  39. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2009).

    Article  Google Scholar 

  40. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. & Smith, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  Google Scholar 

  41. Shimada, S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. Formation of aryl- and benzylboronate esters by rhodium-catalyzed C–H bond functionalization with pinacolborane. Angew. Chem. Int. Ed. 40, 2168–2171 (2001).

    Article  CAS  Google Scholar 

  42. Del Grosso, A., Singleton, P. J., Muryn, C. A. & Ingleson, M. J. Pinacol boronates by direct arene borylation with borenium cations. Angew. Chem. Int. Ed. 50, 2102–2106 (2011).

    Article  CAS  Google Scholar 

  43. Del Grosso, A., Pritchard, R. G., Muryn, C. A. & Ingleson, M. J. Chelate restrained boron cations for intermolecular electrophilic arene borylation. Organometallics 29, 241–249 (2009).

    Article  Google Scholar 

  44. Hevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. Synergic monodeprotonation of bis(benzene)chromium by using mixed alkali metal–magnesium amide bases and structural characterization of the heterotrimetallic products. Angew. Chem. Int. Ed. 44, 68–72 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.L.A. and S.M.M. thank the Engineering and Physical Sciences Research Council (EPSRC), the University of Edinburgh and EaStCHEM for funding, and E. Colineau and R. Caciuffo of the ITU, Karlsruhe, for the SQUID measurements. L.M. and D.M. thank the European Research Council for financial support for this work (post-doctoral fellowship to D.M.). L.M. thanks the Université Paul Sabatier and CNRS for financial support and is a member of the Institut Universitaire de France. CalMip and CINES are acknowledged for generous provision of computing time.

Author information

Authors and Affiliations

Authors

Contributions

S.M.M. synthesized and characterized the compounds and analysed the data. P.L.A. generated and managed the project, helped analyse the data and wrote the manuscript. D.M. and L.M. carried out and interpreted the computational analyses.

Corresponding author

Correspondence to Polly L. Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2230 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 58 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 28 kb)

Supplementary information

Crystallographic data for compound 9 (CIF 53 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 96 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 100 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 31 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 31 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 39 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 33 kb)

Supplementary information

Crystallographic data for compound 6a (CIF 37 kb)

Supplementary information

Crystallographic data for compound 6b (CIF 57 kb)

Supplementary information

Crystallographic data for compound 10 (CIF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, P., Mansell, S., Maron, L. et al. Spontaneous reduction and C–H borylation of arenes mediated by uranium(III) disproportionation. Nature Chem 4, 668–674 (2012). https://doi.org/10.1038/nchem.1392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing