Skip to main content
Log in

Fast slicing orientation determining and optimizing algorithm for least volumetric error in rapid prototyping

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Rapid prototyping fabricates physical prototypes from three-dimensional designing models using the additive process with layers. Aims at reducing the inevitable volumetric error induced in phrase of model slicing which impacts the shape accuracy of fabricated entity, a fast determining scheme of optimal slicing orientation for least volumetric error is proposed. The work analyses the staircase effect between two consecutive layers, then infers a direct computing formula of volume deviation of a whole model. Introduces the term of area weighted normal to express the significant effect of facet area on volumetric error and converts the optimal orientation determining problem to the least absolute deviation linear regression issue. Employs prominent components analysis on weighted normal set to obtain an approximate orientation efficiently, then optimizes the solution through few searchings in neighboring orientation space. The validity and efficiency of the algorithm are evaluated on several examples. Results demonstrate that proposed algorithm consumes less than 32 % of computation load and adaptively obtains the optimal slicing orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications. World Scientific, Singapore

    Book  Google Scholar 

  2. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:10. doi:10.5402/2012/208760

    Article  Google Scholar 

  3. Mahindru DV, Mahendru P (2013) Review of rapid prototyping-technology for the future. Global J Comput Sci Technol 13(4):26–37

    Google Scholar 

  4. Earls A, Baya V (2014) The road ahead for 3-D printers. PwC Network. http://www.pwc.com/technologyforecast. Accessed 22 Nov 2014

  5. Stereolithography interface specification (1988) 3D system Inc, USA

  6. Jamieson R, Hacker H (1995) Direct slicing of CAD models for rapid prototyping. Rapid Prototyp J 1(2):4–12

    Article  Google Scholar 

  7. Dolenc A, Mäkelä I (1994) Slicing procedures for layered manufacturing techniques. Comput Aided Des 26(2):119–126

    Article  Google Scholar 

  8. Sahatoo DR, Chowdary BV, Ali FF, Bhatti R (2008) Slicing issues in CAD translation to STL in rapid prototyping. Paper presented at the The IAJC-IJME International Conference on Engineering & Technology Music City Sheraton Nashville, TN, USA, 17–19 November 2008

  9. Alexander P, Allen S, Dutta D (1998) Part orientation and build cost determination in layered manufacturing. Comput Aided Des 30(5):343–356

    Article  Google Scholar 

  10. Danjou S, Köhler P (2009) Determination of optimal build direction for different rapid prototyping applications. In: Proceedings of the 14th European Forum on Rapid Prototyping

  11. Hur J, Lee K (1998) The development of a CAD environment to determine the preferred build-up direction for layered manufacturing. Int J Adv Manuf Technol 14(4):247–254

    Article  Google Scholar 

  12. Masood S, Rattanawong W, Iovenitti P (2000) Part build orientations based on volumetric error in fused deposition modelling. Int J Adv Manuf Technol 16(3):162–168

    Article  Google Scholar 

  13. Masood SH, Rattanawong W (2002) A generic part orientation system based on volumetric error in rapid prototyping. J Adv Manuf Technol 19(3):209–216

    Google Scholar 

  14. Lin F, Sun W, Yan Y (2001) Optimization with minimum process error for layered manufacturing fabrication. Rapid Prototyp J 7(2):73–82

    Article  Google Scholar 

  15. Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671. doi:10.1016/j.jmatprotec.2008.02.050

    Article  Google Scholar 

  16. Ahn D, Kweon JH, Kwon S, Song J, Lee S (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Technol 209(15-16):5593–5600. doi:10.1016/j.jmatprotec.2009.05.016

    Article  Google Scholar 

  17. Boschetto A, Giordano V, Veniali F (2012) Modelling micro geometrical profiles in fused deposition process. Int J Adv Manuf Technol 61(9-12):945–956. doi:10.1007/s00170-011-3744-1

    Article  Google Scholar 

  18. Boschetto A, Giordano V, Veniali F (2013) 3D roughness profile model in fused deposition modelling. Rapid Prototyp J 19(4):240–252. doi:10.1108/13552541311323254

    Article  Google Scholar 

  19. Ahari H (2013) Optimization of slicing direction in laminated tooling for volume deviation reduction. Assem Autom 33(2):139–148. doi:10.1108/01445151311306645

    Article  Google Scholar 

  20. Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling, vol 44, pp 585–594. doi:10.1016/j.ijmachtools.2003.12.004

  21. Byun HS, Lee KH (2006) Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robot Cim-Int Manuf 22(1):69–80. doi:10.1016/j.rcim.2005.03.001

    Article  Google Scholar 

  22. Vijay P, Danaiah P, Rajesh K (2011) Critical parameters effecting the rapid prototyping surface finish. J Mech Eng Autom 1(1):17–20

    Article  Google Scholar 

  23. Canellidis V, Giannatsis J, Dedoussis V (2009) Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int J Adv Manuf Technol 45(7-8):714–730

    Article  Google Scholar 

  24. Raut S, Jatti VS, Khedkar NK, Singh T (2014) Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Procedia Materials Science 6:1625–1630

    Article  Google Scholar 

  25. Vidaurre D, Bielza C, Larrañaga P (2013) A survey of L1 regression. Int Stat Rev 81(3):361–387

    Article  MathSciNet  Google Scholar 

  26. Chen K, Ying ZL, Zhang H, Zhao LC (2008) Analysis of least absolute deviation. Biometrika 95(1):107–122. doi:10.1093/biomet/asm082

    Article  MathSciNet  MATH  Google Scholar 

  27. Shlens J (2014) A tutorial on principal component analysis. Cornell University Library. http://arxiv.org/pdf/1404.1100.pdf. Accessed 28 Sep 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, N., Wang, Q. Fast slicing orientation determining and optimizing algorithm for least volumetric error in rapid prototyping. Int J Adv Manuf Technol 83, 1297–1313 (2016). https://doi.org/10.1007/s00170-015-7571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7571-7

Keywords

Navigation