Patterns of electromagnetic response in topological semimetals

Srinidhi T. Ramamurthy and Taylor L. Hughes
Phys. Rev. B 92, 085105 – Published 3 August 2015

Abstract

Topological semimetals are gapless states of matter which have robust and unique electromagnetic responses and surface states. In this paper, we consider semimetals which have pointlike Fermi surfaces in various spatial dimensions D=1,2,3 which naturally occur in the transition between a weak topological insulator and a trivial insulating phase. These semimetals include those of Dirac and Weyl types. We construct these phases by layering strong topological insulator phases in one dimension lower. This perspective helps us understand their effective response field theory that is generally characterized by a 1-form b which represents a source of Lorentz violation and can be read off from the location of the nodes in momentum space and the helicities/chiralities of the nodes. We derive effective response actions for the two-dimensional (2D) and 3D Dirac semimetals and extensively discuss the response of the Weyl semimetal. We also show how our work can be used to describe semimetals with Fermi surfaces with lower codimension as well as to describe the topological response of 3D topological crystalline insulators.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
15 More
  • Received 17 July 2014
  • Revised 28 May 2015

DOI:https://doi.org/10.1103/PhysRevB.92.085105

©2015 American Physical Society

Authors & Affiliations

Srinidhi T. Ramamurthy and Taylor L. Hughes

  • Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 8 — 15 August 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×