Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A stratified water column environmental model for the type Kimmeridge Clay

Abstract

GALLOIS has reported the widespread occurrence of coeval coccolith limestones and oil shales in the Kimmeridge Clay of southern England and Lincolnshire1,2. From the association of these limestones with oil shale horizons he suggested that the organic content of the Kimmeridge Clay was largely derived from phytoplankton blooms whose decay produced the temporary anaerobic bottom conditions necessary to preserve organic matter. However, comparisons with similar Quarternary sediments in the Black Sea and Mediterranean has led us to report here that phytoplankton blooms were not the cause, but rather a symptom of widespread anaerobic bottom conditions, and that preservational factors rather than productivity are the major control on the accumulation of black shales. We believe that the fine grained clastic-bituminous shale–oil shale–coccolith limestone lithologic association characteristic of the type Kimmeridge Clay can be attributed to the vertical movement of the O2: H2S interface in a temporarily stratified water column.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gallois, R. W. Nature 259, 473–475 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Gallois, R. W. Rep. 78/13, Inst. Geol. Sci. (1978).

  3. Ioannides, N. S. et al. Micropaleontology 22, 443–478 (1976).

    Article  Google Scholar 

  4. Riley, L. A. thesis, Open Univ. (1974).

  5. Dunn, C. E. Chem. Geol. 13, 217–232 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Irwin, H., Curtis, C. & Coleman, M. Nature 269, 209–213 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Ross, D. A. & Degens, E. T. Am. Ass. Petrol. Geol. Mem. 20, 183–198 (1974).

    CAS  Google Scholar 

  8. Stanley, D. J. & Maldonado, A. Nature 266, 129–135 (1977).

    Article  ADS  Google Scholar 

  9. Thunnell, R. C. et al. Mar. Micropal. 2, 371–388 (1977).

    Article  Google Scholar 

  10. Wall, D. & Dale, B. Am. Ass. Petrol. Geol. Mem. 20, 364–380 (1974).

    Google Scholar 

  11. Pelet, R. & Debyser, Y. Geochim. cosmochim Acta 41, 1575–1586 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Volkov, I. I. & Fomina, L. S. Am. Ass. Petrol. Geol. Mem. 20, 456–476 (1974).

    CAS  Google Scholar 

  13. Dickman, M. & Artuz, I. Nature 275, 191–195 (1978).

    Article  ADS  Google Scholar 

  14. Deuser, W. G. Am. Ass. Petrol. Geol. Mem. 20, 133–136 (1974).

    Google Scholar 

  15. Stanley, D. J. Nature 274, 149–152 (1978).

    Article  ADS  Google Scholar 

  16. Maldonado, A. & Stanley, D. J. 9th Int. Congr. Sedimentol. 6, 185–194 (1975).

    Google Scholar 

  17. Maldonado, A. & Stanley, D. J. Mar. Geol. 20, 27–40 (1976).

    Article  ADS  Google Scholar 

  18. Olausson, E. Rep. Swedish Deep Sea Expedition, 1947–48, 8, 287–387 (1960–61).

    Google Scholar 

  19. Rhoads, D. C. & Morse, J. W. Lethaia 4, 413–428 (1971).

    Article  Google Scholar 

  20. Stanley, S. M. Geol. Soc. Am. Mem. (1970).

  21. Duff, K. L. Palaeontology 18, 443–482 (1975).

    Google Scholar 

  22. Bottema, S. & Van Straaten, L. M. J. U. Mar. Geol. 4, 553–564 (1966).

    Article  ADS  Google Scholar 

  23. Trimonis, E. S. Am. Ass. Petrol. Geol. Mem. 20, 279–295 (1974).

    CAS  Google Scholar 

  24. Dunn, C. E. thesis, Univ. London (1972).

  25. Milliman, J. D. & Muller, J. Sedimentology 20, 29–45 (1973).

    Article  ADS  CAS  Google Scholar 

  26. Vail, P. R. et al. in Mesozoic Northern North Sea Symp. (Norwegian Petrol. Soc., Oslo, MNNSS/12, 1–35, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TYSON, R., WILSON, R. & DOWNIE, C. A stratified water column environmental model for the type Kimmeridge Clay. Nature 277, 377–380 (1979). https://doi.org/10.1038/277377a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277377a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing