Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1

Abstract

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1; MIM 254800) is an autosomal recessive disorder that occurs with a low frequency in many populations but is more common in Finland and the Mediterranean region1,2. It is characterized by stimulus-sensitive myoclonus and tonic-clonic seizures with onset at age 6–15 years, typical electroencephalographic abnormalities and a variable rate of progression between and within families3–5. Following the initial mapping of the EPM1 gene to chromosome 21 (ref. 6) and the refinement of the critical region to a small interval7–9, positional cloning identified the gene encoding cystatin B (C5T6), a cysteine protease inhibitor, as the gene underlying EPM1 (ref. 10). Levels of messenger RNA encoded by CST6 were dramatically decreased in patients. A 3′ splice site and a stop codon mutation were identified in three families, leaving most mutations uncharacterized10. In this study, we report a novel type of disease-causing mutation, an unstable 15- to 18-mer minisatellite repeat expansion in the putative promoter region of the CST6 gene. The mutation accounts for the majority of EPM1 patients worldwide. Haplotype data are compatible with a single ancestral founder mutation. The length of the repeat array differs between chromosomes and families, but changes in repeat number seem to be comparatively rare events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berkovic, S.F., Berlovic, R., Carpenter, S. & Wolfe, L.S. Progressive myoclonus epilepsies: specific causes and diagnosis. N. Eng. J. Med. 315, 296–305 (1986).

    Article  CAS  Google Scholar 

  2. Classification of progressive myoclonus epilepsies and related disorders. Ann. Neurol. 28, 113–116 (1990).

  3. Koskiniemi, M., Donner, M., Majuri, H., Haltia, M. & Norio, R. Progressive myoclonus epilepsy: a clinical and histopathological study. Acta Neurol. Scand. 50, 307–322 (1974).

    Article  CAS  Google Scholar 

  4. Norio, R. & Koskiniemi, M. Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin. Genet. 15, 382–398 (1979).

    Article  CAS  Google Scholar 

  5. Koskiniemi, M., Toivakka, E. & Donner, M. Progressive myoclonus epilepsy. Electroencephalographical findings. Acta Neurol. Scand. 50, 333–359 (1974).

    Article  CAS  Google Scholar 

  6. Lehesjoki, A.-E. et al. Localization of a gene for progressive myoclonus epilepsy to chromosome 21q22. Proc. Natl. Acad. Sci. USA 88, 3696–3699 (1991).

    Article  CAS  Google Scholar 

  7. Lehesjoki, A.-E. et al. Linkage studies in progressive myoclonus epilepsy: Unverricht-Lundborg and Lafora's diseases. Neurology 42, 1545–1550 (1992).

    Article  CAS  Google Scholar 

  8. Lehesjoki, A.-E. et al. Localization of the EPM1 gene for progressive myoclonus epilepsy on chromosome 21: linkage disequilibrium allows high resolution mapping. Hum. Mol. Genet. 2, 1229–1234 (1993).

    Article  CAS  Google Scholar 

  9. Virtaneva, K. et al. Progressive myoclonus epilepsy EPM1 locus maps to a 175 kb interval in distal 21 q. Am. J. Hum. Genet 58, 1247–1253 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Pennacchio, L.A. et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271, 1731–1734 (1996).

    Article  CAS  Google Scholar 

  11. Lehesjoki, A.-E. et al. PME of Unverricht-Lundborg type in the Mediterranean region: linkage and linkage disequilibrium confirm the assignment to the EPM1 locus. Hum. Genet. 93, 668–674 (1994).

    Article  CAS  Google Scholar 

  12. Bell, G.I., Bell, M.J. & Rutter, W.J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35 (1982).

    Article  CAS  Google Scholar 

  13. Owerbach, D. & Gabbay, K.H. Localization of a type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 42, 1708–1714 (1993).

    Article  CAS  Google Scholar 

  14. Bell, G.I., Horita, S. & Karam, J.H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus.Diabetes 33, 176–183 (1984).

    Article  CAS  Google Scholar 

  15. Bennet, S.T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet. 9, 284–292 (1995).

    Article  Google Scholar 

  16. Kennedy, G.C., German, M.S. & Rutter, W.J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nature Genet. 9, 293–298 (1995).

    Article  CAS  Google Scholar 

  17. Lucassen, A.M. et al. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum. Molec. Genet. 4, 501–506 (1995).

    Article  CAS  Google Scholar 

  18. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: Structure and biological implications. Proc. Natl. Acad. Sci. 92, 5199–5203 (1995).

    Article  CAS  Google Scholar 

  20. Ashley, C.T. Jr. & Warren, S.T. Trinucleotide expansions and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  Google Scholar 

  21. de la Chapelle, A. Disease gene mapping in isolated human populations: the example of Finland. J. Med. Genet. 30, 857–865 (1993).

    Article  CAS  Google Scholar 

  22. Sokal, R.R., Oden, N.L. & Wilson, C. Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nature 9, 143–145 (1991).

    Article  Google Scholar 

  23. Cooper, D.N., Krawczak, M. & Antonarakis, S.E. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 259–291 (McGraw-Hill, New York, 1995).

    Google Scholar 

  24. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronicGAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  25. Warren, S.T. The expanding world of trinucleotide repeats. Science 271, 1374–1375 (1996).

    Article  CAS  Google Scholar 

  26. Jeffreys, A.J. et al. . Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  27. Monckton, D.G. et al. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nature Genet. 8, 162–170 (1994).

    Article  CAS  Google Scholar 

  28. Stone, N. et al. Construction of a 750 kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy (EPM1) gene. Genome Res. 6, 218–225 (1996).

    Article  CAS  Google Scholar 

  29. Kunst, C. & Warren, S. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virtaneva, K., D'Amato, E., Miao, J. et al. Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Genet 15, 393–396 (1997). https://doi.org/10.1038/ng0497-393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0497-393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing