Skip to main content
Log in

Numerical studies on cold fronts Part I: Gravity flows in a neutral and stratified atmosphere

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

We have used a two dimensional version of a nonhydrostatic mesoscale model to simulate atmospheric gravity currents for different thermal stratification. The horizontal and vertical grid increments are chosen such, that the major features of a current like head and elevated nose are resolvable.

When the density current propagates into a neutral stratified environment it was found, that frontspeed agrees well with an empirical formula. Also characteristic length scales like depth of the head or height of the following cold air body agree well with observations found in water tank experiments.

When a stable atmosphere is adopted, the front moves faster and the generated gravity waves have a significant influence on the atmospheric variables ahead of the current. This results especially in a pressure increase before the front arrives, an effect, which was found in observations, too.

Finally, it is shown, that an elevated inversion, embedded in a stable layer, intensifies the vertical velocities and therefore the mesoscale heat flux, which results in a stronger entrainment. For this case a remarkable decrease of front speed is simulated with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer, A. H., Sand, W., 1966: Updraught measurements beneath the base of a cumulus and cumulonimbus clouds.J. Appl. Meteor.,5, 461–466.

    Google Scholar 

  • Benjamin, T. B., 1968: Gravity currents and related phenomena.J. Fluid Mech.,31, 209–248.

    Google Scholar 

  • Bischoff-Gauss, I., 1987: Vertikale mesoturbulente Impuls-und Energietransporte unter dem Einfluß der Orographie — Numerische Simulationen. PhD Thesis, Dept. Met. Tech. University Darmstadt, 162 pp.

  • Charba J., 1974: Application of a gravity current model to analysis of squall-line gust fronts.Mon. Wea. Rev.,102, 140–156.

    Google Scholar 

  • Clarke, R. H., 1961: Mesostructure of dry cold fronts over featureless terrain.J. Meteor.,12, 715–735.

    Google Scholar 

  • Crook, N. A., Miller, M. J., 1985: A numerical and analytical study of atmospheric undular bores.Quart. J. Roy. Meteor. Soc.,111, 225–242.

    Google Scholar 

  • Droegemeier, K. K., Wilhelmson, R. B., 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics.J. Atm. Sci.,44, 1180–1210.

    Google Scholar 

  • Garrat, J. R., Physick, W. L., 1986: Numerical study of atmospheric gravity currents. I: Simulations and observations of cold fronts.Contrib. Atmos. Phys.,59, 282–300.

    Google Scholar 

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows.Mon. Wea. Rev.,104, 1429–1440.

    Google Scholar 

  • Gross, G., 1987: Some effects of deforestation on local climate and nocturnal drainage flow—A numerical study.Bound.-Layer Meteor.,38, 315–337.

    Google Scholar 

  • Hobbs, P. V., Persson, P. O. G., 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The sub-structure of narrow cold-frontal rainbands.J. Atmos. Sci.,39, 280–295.

    Google Scholar 

  • Karman T., 1940: The engineer grapples with nonlinear problems.Bull. Amer. Math. Soc.,46, 615–683.

    Google Scholar 

  • Miller, M. J., Thorpe A. J., 1981: Radiation conditions for the later boundaries of limited area numerical models.Quart. J. Roy. Meteor. Soc.,107, 615–628.

    Google Scholar 

  • Mitchell, K. E., Hovermale, J. B., 1977: A numerical investigation of the severe thunderstorm gust front.Mon. Wea. Rev.,105, 657–675.

    Google Scholar 

  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front.Mon. Wea. Rev.,112, 1634–1639.

    Google Scholar 

  • Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents.Quart. J. Roy. Meteor. Soc.,95, 758–765.

    Google Scholar 

  • Simpson, J. E., Mansfield, D. A., Milford, J. R., 1977: Inland penetration of sea-breeze fronts.Quart. J. Roy. Meteor. Soc.,103, 47–76.

    Google Scholar 

  • Simpson, J. E., Britter, R. E., 1980: A laboratory model of an atmospheric mesofront.Quart. J. Roy. Meteor. Soc.,106, 485–500.

    Google Scholar 

  • Smith, R. K., Crook, N. Roff, G., 1982: The morning glory: an extraordinary atmospheric undular bore.Quart. J. Roy. Meteor. Soc.,108, 937–956.

    Google Scholar 

  • Thorpe, A. J., Miller, M. J., Moncrieff, M. W., 1980: Dynamical models of two dimensional downdraughts.Quart. J. Roy. Meteor. Soc.,106, 463–484.

    Google Scholar 

  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with doppler radar and rawinsonde data.Mon. Wea. Rev.,110, 1060–1082.

    Google Scholar 

  • Williams, R. T., 1974: Numerical simulation of steady-state frontsJ. Atm. Sci.,31, 1286–1296.

    Google Scholar 

  • Young, G. S., Johnson, R. H., 1984: Meso- and Microscale features of a Colorado cold front.J. Climate Appl. Meteor.,23, 1315–1325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff-Gauss, I., Gross, G. Numerical studies on cold fronts Part I: Gravity flows in a neutral and stratified atmosphere. Meteorl. Atmos. Phys. 40, 150–158 (1989). https://doi.org/10.1007/BF01032455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01032455

Keywords

Navigation