Skip to main content
Log in

The relation between pollen exine sculpturing and self-incompatibility mechanisms

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In angiosperm pollen the reticulate-perforate exine sculpturing is associated with sporophytic self-incompatibility (S.S.I.) and imperforate and microperforate exine sculpturing is associated with gametophytic self-incompatibility. The earliest unequivocal angiosperm pollen conforms to exine morphology of pollen from plants with S.S.I. The orgin of S.S.I. is hypothesized to have coincided with the appearance of what is now the earliest recognizable angiosperm pollen. Other angiosperm characteristics correlated with S.I., functional stigmatic areas, large showy flowers (or aggregated inflorescences), and passive seed dispersal, provide some insight into the biological aspects of the earliest angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andersen, S. T., Bertelsen, F., 1972: Scanning electron microscope studies of pollen of cereals and other grasses. — Grana12, 79–86.

    Google Scholar 

  • Anderson, G. J., Gensel, P. G., 1976: Pollen morphology and systematics ofSolanum sect.Basarthrum. — Pollen Spores18, 533–552.

    Google Scholar 

  • Baker, H. G., Hurd, P. D., 1968: Intrafloral ecology. — Ann. Rev. Entomol.13, 385–414.

    Google Scholar 

  • Beach, J. H., Kress, W. J., 1980: Sporophyte vs. gametophyte: a note on the origin of self-incompatibility in flowering plants. — Syst. Bot.5, 1–5.

    Google Scholar 

  • Bolick, M. R., 1981: Mechanics as an aid to interpreting pollen structure and function. — Rev. Paleobot. Palynol.35, 61–79.

    Google Scholar 

  • Brenner, G. J., 1976: Middle Cretaceous floral provinces and the early migration of angiosperms. — InBeck, C. B., (Ed.): The Origin and Early Evolution of the Angiosperms, pp. 23–44. — New York: Columbia Univ. Press.

    Google Scholar 

  • Brewbaker, J. L., 1957: Pollen cytology and self-incompatibility systems in plants. — J. Heredity48, 271–277.

    Google Scholar 

  • —, 1959: Biology of the angiosperm pollen grain. — Ind. J. Genet. Plant Breed.19, 121–133.

    Google Scholar 

  • Brown, R., 1956: Palm-like plants from the Dolores Formation (Triassic), southwestern Colorado. — U.S. Geol. Surv. Prof. Pap.274-H, 205–209.

    Google Scholar 

  • Burger, W. C., 1981: Why are there so many kinds of flowering plants? — Bioscience31, 572–580.

    Google Scholar 

  • Chaloner, W. G., 1976: The evolution of adaptive features in fossil exines. — In:Ferguson, I. K., Muller, J., (Eds.): The Evolutionary Significance of the Exine, p. 1–11. London: Academic Press.

    Google Scholar 

  • Clarke, G. C. S., 1975: Irregular pollen grains in someHypericum species. — Grana15, 117–125.

    Google Scholar 

  • Crepet, W. L., 1974: Investigations of North American Cycadeoids: The reproductive biology ofCycadeoidea. — Paleontographica148B, 144–159.

    Google Scholar 

  • —, 1979: Insect pollination: A paleontological perspective. — Bioscience29, 102–108.

    Google Scholar 

  • —, 1983: The role of insect pollination in the origin of the angiosperms. — InLes Real (Ed.): Pollination Biology. — New York: Academic Press.

    Google Scholar 

  • Crowe, L. K., 1964: The evolution of outbreeding in plants. I. Angiosperms. — Heredity19, 435–457.

    Google Scholar 

  • DeNettancourt, D., 1977: Incompatibility in angiosperms. — Berlin: Springer-Verlag.

    Google Scholar 

  • Dickinson, H. G., Lewis, D., 1975: Interaction between the pollen grain coating and the stigmatic surface during compatible and incompatible interspecific pollinations inRaphanus. In:Duckett, J. C., Racey, P. A., (Eds.): The Biology of the Male Gamete, Suppl.1, pp. 165–175. — Biol. J. Linn. Soc.7.

  • Dickison, W. C., 1979: A survey of pollen morphology of theConnaraceae. — Pollen Spores21, 31–79.

    Google Scholar 

  • Dilcher, D. L., 1979: Early angiosperm reproduction: An introductory report. — Rev. Paleobot. Palynol.27, 291–328.

    Google Scholar 

  • Doyle, J. A., 1969: Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. — J. Arnold Arboretum30, 1–35.

    Google Scholar 

  • —, 1973: The monocotyledons: Their evolution and comparative biology. V. Fossil evidence on the early evolution of monocotyledons. — Quart. Rev. Biol.48, 399–413.

    Google Scholar 

  • Doyle, J. A., Biens, P., Doerenkamp, A., Jardin, S., 1977: Angiosperm pollen from the pre-Albian Lower Cretaceous of equatorial Africa. — Bull. Cent. Rech. Explor-prod. Elf-Aquitaine1, 451–473.

    Google Scholar 

  • —, 1982:Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. — Bull. Cent. Rech. Explorprod. Elf-Aquitaine6, 39–117.

    Google Scholar 

  • Doyle, J. A., Hickey, L. J., 1976: Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. — InBeck, C. B., (Ed.): The Origin and Early Evolution of the Angiosperms, pp. 139–206. — New York: Columbia Univ. Press.

    Google Scholar 

  • —, 1976: Observations on exine structure ofEucommiidites and Lower Cretaceous angiosperm pollen. — Pollen Spores27, 429–486.

    Google Scholar 

  • East, E. M., 1940: The distribution of self-sterility in the flowering plants. — Proced. Amer. Phil. Soc.82, 449–517.

    Google Scholar 

  • Erde, F., 1981: Key for northwest European Rosaceae pollen. — Grana20, 101–118.

    Google Scholar 

  • Erdtman, G., 1952: Pollen Morphology and Plant Taxonomy. Angiosperms. — Stockholm: Almqvist and Wiksell.

    Google Scholar 

  • Foster, C. B., Price, P. L., 1982: Exine intrastructure ofPraecolpatites sinuosus (Balm & Hennely)Bharadwaj & Srivastava 1969 andMarsupipollenites triradiatus Balm & Hennely 1956. — The Paleobotanist28-29, 177–187.

    Google Scholar 

  • Gillissen, L. J. W., Brantjes, N. B. M., 1978: Function of the pollen coat in different stages of the fertilization process. — Acta. Bot. Neerl.27, 205–212.

    Google Scholar 

  • Givnish, T. J., 1982: Outcrossing versus ecological constraints in the evolution of dioecy. — Amer. Nat.119, 849–865.

    Google Scholar 

  • Grant, V., 1958: The regulation of recombination in plants. — Cold Spring Harbor Symp. Quant. Biol.23, 337–363.

    PubMed  Google Scholar 

  • Heiser, C. B., 1962: Some observations on pollination and compatibility in Magnolia. — Proc. Ind. Acad. Sci.72, 256–266.

    Google Scholar 

  • Heusser, C. J., 1971: Pollen and Spores of Chile. — Tucson: Univ. Arizona Press.

    Google Scholar 

  • Heslop-Harrison, J., 1968: Tapetal origin of pollen-coat substances inLilium. — New Phytol.67, 779–786.

    Google Scholar 

  • —, 1975: Incompatibility and the pollen-stigma interaction. — Ann. Rev. Pl. Physiol.26, 403–425.

    Google Scholar 

  • —, 1973: Pollen wall proteins. “Gametophytic” and “Sporophytic” fractions in the pollen walls of theMalvaceae. — Ann. Bot.37, 403–412.

    Google Scholar 

  • Hubbell, S. P., 1979: Tree dispersion, abundance, and diversity in a tropical dry forest. — Science203, 1299–1309.

    Google Scholar 

  • Köhler, E., Lange, E., 1979: A contribution to distinguishing cereal from wild grass pollen by LM and SEM. — Grana18, 133–140.

    Google Scholar 

  • Krassilov, V. A., 1975:Dirhopalastachyaceae—a new family of proangiosperms and its bearing on the problem of angiosperm ancestry. — Palaeontographica (Abt. 13)153, 100–110.

    Google Scholar 

  • —, 1977: The origin of angiosperms. — Bot. Rev.43, 143–176.

    Google Scholar 

  • Larsen, S. S., 1975: Pollen morphology of Thai species ofBauhinia (Caesalpinaceae). — Grana14, 114–131.

    Google Scholar 

  • Lewis, W. H., 1965: Pollen morphology and evolution inHedyotis subgen.Edrisia (Rubiaceae). Amer. J. Bot.52, 257–264.

    Google Scholar 

  • Melville, R., 1981: Surface tension, diffusion, and the evolution and morphogenesis of pollen aperture patterns. — Pollen Spores23, 179–203.

    Google Scholar 

  • Muller, J., 1979: Form and function in angiosperm pollen. — Ann. Mo. Bot. Gard.66, 593–639.

    Google Scholar 

  • Nilsson, S., 1967: Pollen morphological studies in theGentianaceae-Gentianeae. — Grana7, 46–145.

    Google Scholar 

  • —, 1968: Pollen morphology in the genusMacrocarpaea (Gentianaceae) and its taxonomic significance. — Svensk Bot. Tidsk.62, 338–364.

    Google Scholar 

  • —, 1970: Pollen morphological contributions to the taxonomy ofLisianthus L. s. lat. (Gentianaceae). — Svensk Bot. Tidsk.64, 1–43.

    Google Scholar 

  • Nowicke, J. W., Ridgeway, J. E., 1973: Pollen studies in the genusCordia (Boraginaceae). — Amer. J. Bot.60, 584–591.

    Google Scholar 

  • -Skvarla, J. J., 1977: Pollen morphology and the relationship ofPlumbaginaceae, Polygonaceae, andPrimulaceae to the OrderCentrospermae. — Smithson. Contrib. Bot., No.37.

  • Pandey, K. K., 1958: On the time of S gene action. — Nature (London)181, 1220.

    Google Scholar 

  • —, 1960: Evolution of gametophytic and sporophytic systems of self-incompatibility in angiosperms. — Evolution14, 98.

    Google Scholar 

  • —, 1980: Evolution of incompatibility systems in plants: Origin of independent and complementary control of incompatibility in angiosperms. — New Phytol.84, 381–400.

    Google Scholar 

  • Payne, W. W., 1981: Structure and function in angiosperm pollen wall evolution. — Rev. Paleobot. Palynol.35, 39–59.

    Google Scholar 

  • Ridley, H. N., 1930: The dispersal of plants throughout the world. — Kent: Asford.

    Google Scholar 

  • Rogers, C. M., 1980: Pollen dimorphism in distylous species ofLinum sect.Linastrum (Linaceae). — Grana19, 19–20.

    Google Scholar 

  • Schweitzer, H. J., 1977: Die Rhaeto-jurassischen Floren des Iran und Afghanistans. 4. Die rätische ZwitterblüteIrania hermaphroditica nov. spec. und ihre Bedeutung für die Phylogenie der Angiospermen. — Palaeontographica (Abt. B)161, 98–145.

    Google Scholar 

  • Skvarla, J. J., Raven, P. H., Chissoe, W. F., Sharp, M., 1978: An ultrastructural study of viscin threads in Onagraceae pollen. Pollen Spores 20, 5–144.

    Google Scholar 

  • —, 1976: Ultrastructural survey ofOnagraceae pollen. — InFerguson, I. K., Muller, J., (Eds.): The Evolutionary Significance of the Exine, pp. 447–467. — Linn. Soc. Symp. Ser. No. 1. — London: Academic Press.

    Google Scholar 

  • Small, E., Bassett, I. J., Crompton, C. W., 1981: Pollen variation in the tribeTrigonelleae (Leguminosae) with special reference toMedicago. — Pollen Spores23, 295–230.

    Google Scholar 

  • Srivastava, S. K., 1977: Microspores from the Fredericksburg Group (Albian) of the southern United States. — Paleobiologie Continentale6, 1–119.

    Google Scholar 

  • Stanley, R. G., Linskens, H. F., 1974: Pollen Biology, Biochemistry, Management. — Berlin: Springer-Verlag.

    Google Scholar 

  • Stebbins, G. L., 1981: Why are there so many species of flowering plants? — Bioscience31, 573–577.

    Google Scholar 

  • Taylor, T. N., Levin, D. A., 1975: Pollen morphology ofPolemoniaceae in relation to systematics and pollination systems: Scanning electron microscopy. — Grana15, 91–112.

    Google Scholar 

  • Thomas, H. H., 1925: TheCaytoniales: A new group of angiospermous plants from the Jurassic rocks of Yorkshire. — Philos. Trans. R. Soc. London, Ser. B,213, 299–363.

    Google Scholar 

  • —, 1934: The nature and origin of the stigma. — New Phytol.33, 132–198.

    Google Scholar 

  • Tiffney, B. H., 1981: Diversity and major events in the evolution of land plants. — InNiklas, K. J., (Ed.): Paleobotany, Paleoecology, and Evolution, Vol.2, pp. 193–230. — New York: Praeger Press.

    Google Scholar 

  • —, 1983: A fossil noctuid moth egg from the Late Cretaceous of eastern North America. — Science219, 507–509.

    Google Scholar 

  • Ting, W. S., 1966: Pollen morphology ofOnagraceae. — Pollen Spores8, 9–36.

    Google Scholar 

  • van Balgooy, M. M. J., 1971: Plant geography of the Pacific. — Blumea (Suppl.)6, 1–22.

    Google Scholar 

  • Vulleumier, B. S., 1967: The origin and evolutionary development of heterostyly in the angiosperms. — Evol.21, 210–226.

    Google Scholar 

  • Walker, J. W., 1974a: Evolution of exine structure in pollen of primitive angiosperms. — Amer. J. Bot.61, 891–902.

    Google Scholar 

  • —, 1974b: Aperture evolution in the pollen of primitive angiosperms. — Amer. J. Bot.61, 1112–1137.

    Google Scholar 

  • -Walker, A. G., 1984: Same grain combined light, scanning electron, and transmission electron microscopy of Lower Cretaceous angiosperm pollen. — Ann. Mo. Bot. Gard. (in press).

  • Walker, J. W., Brenner, G. J., Walker, A. G., 1983: Winteraceous pollen in the Lower Cretaceous of Israel: Early evidence of magnolialean angiosperm family. — Science220, 1273–1275.

    Google Scholar 

  • Watson, L., Bell, E. M., 1975: A surface-structural survey of some taxonomically diverse grass pollens. — Aust. J. Bot.23, 981–990.

    Google Scholar 

  • Weber, M. O., 1981: Pollen diversity and identification in somePlumbaginaceae. — Pollen Spores23, 321–348.

    Google Scholar 

  • Whitehouse, H. L. K., 1950: Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. — Ann. Bot.14, 199–216.

    Google Scholar 

  • Xavier, K. S., Mildner, R. A., Rogers, C. M., 1980: Pollen morphology ofLinum sect.Linastrum (Linaceae). — Grana19, 183–188.

    Google Scholar 

  • Zavada, M. S., 1984: Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann. Mo. Bot. Gard. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavada, M.S. The relation between pollen exine sculpturing and self-incompatibility mechanisms. Pl Syst Evol 147, 63–78 (1984). https://doi.org/10.1007/BF00984580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984580

Key words

Navigation