Skip to main content
Log in

Assignment of a locus for mouse lung tumor susceptibility to proximal Chromosome 19

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Previous studies have hypothesized that at least three genetic loci contribute to differences in pulmonary adenoma susceptibility between mouse strains A/J and C57BL/6J. One gene that may confer susceptibility to lung tumorigenesis is the Kras protooncogene. To identify other relevant loci involved in this polygenic trait, we determined tumor multiplicity in 56 randomly chosen N-ethyl-N-nitrosourea-treated (A/J×C57BL/6J) N1×C57BL/6 backcross (AB6N2) progeny and correlated it with genotypes at 77 microsatellite markers spanning the genome. A correlation of lung tumor multiplicity phenotypes with genotypes of microsatellite markers on distal Chromosome (Chr) 6 in the Kras region (Pas1) was confirmed, and a new region on Chr 19 (designated Pas3) was identified that also contributes to susceptibility. Linkage analysis on Chr 19 with 270 AB6N2 mice localized the region flanked by D19Mit42 and D19Mit19 that is most closely associated with lung tumor susceptibility. The Pas3 locus may be an enhancer of the susceptibility locus on Chr 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belinsky, S.A., Devereux, T.R., Maronpot, R.R., Stoner, G.D., Anderson, M.W. (1989). Relationship between the formation of promutagenic adducts and the activation of the K-ras proto-oncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res 49, 5301–5311.

    Google Scholar 

  • Bloom, J.L., Falconer, D.S. (1964). A gene with major effect on susceptibility to induced lung tumors in mice. J. Natl. Cancer Inst. 33, 607–618.

    Google Scholar 

  • Copeland, N.G., Jenkins, N.A., Gilbert, D.J., Eppig, J.T., Maltais, L.J., Miller, J.C., Dietrich, W.F., Weaver, A., Lincoln, S.E., Steen, R.G., Stein, L.D., Nadeau J.H., Lander, E.S. (1993). A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66.

    Google Scholar 

  • Cornall, R.J., Aitman, T.J., Hearne, C.H., Todd, J.A. (1991). The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10, 874–881.

    Google Scholar 

  • den Engelse, L., Oomen, L.C.J.M., van der Valk, M.A., Hart, A.A.M., Dux, A., Emmelot, P. (1981). Studies on lung tumors. V. Susceptibility of mice to dimethylnitrosamine-induced tumor formation in relation to H-2 haplotype. Int. J. Cancer 28, 199–208.

    Google Scholar 

  • Devereux, T.R., Foley, J.F., Maronpot, R.R., Kari, F., Anderson, M.W. (1993a). Ras protooncogene activation in liver and lung tumors from B6C3F1 mice exposed chronically to methylene chloride. Carcinogenesis 14, 795–802.

    Google Scholar 

  • Devereux, T.R., Belinsky, S.A., Maronpot, R.R., White, C.M., Hegi, M.E., Patel, A.C., Foley, J.F., Greenwell, A., Anderson, M.W. (1993b). Comparison of pulmonary O6-methylguanine DNA adduct levels and Ki-ras activation in lung tumors from resistant and susceptible mouse strains. Mol. Carcinogen. 8, 177–185.

    Google Scholar 

  • Dietrich, W.F., Katz, H., Lincoln, S.E., Shin, H.S., Friedman, J., Dracopoli, N.C., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.

    Google Scholar 

  • Dietrich, W.F., Lander, E.S., Smith, J.S., Moser, A.R., Gould, K.A., Luongo, C., Borenstein, N., Dove, W. (1993). Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639.

    Google Scholar 

  • Faraldo, M.J., Dux, A., Muhlbock, O., Hart, G. (1979). Histocompatibility genes (the H-2 complex) and susceptibility to spontaneous lung tumors in mice. Immunogenetics 9, 383–404.

    Google Scholar 

  • Gariboldi, M., Manenti, G., Canzian, F., Falvella, F.S., Radice, M.T., Pierotti, M.A., Della Porta, G., Binelli, G., Dragani, T.A. (1993). A major susceptibility locus to murine lung carcinogenesis maps on Chromosome 6. Nature Genet. 3, 132–136.

    Google Scholar 

  • Guénet, J.-L., Poirier, C. (1993). Mouse Chromosome 19. Mamm. Genome 4(suppl.), S261-S268.

    Google Scholar 

  • Heston, W.E. (1942). Genetic analysis of susceptibility to induced pulmonary tumors in mice. J. Natl. Cancer Inst. 3, 69–78.

    Google Scholar 

  • Kulkarni, M.S., Anderson, M.W. (1984). Persistence of benzo(a)pyrene: DNA adducts in lung and liver of mice. Cancer Res 44, 97–101.

    Google Scholar 

  • Lander, E.S., Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Google Scholar 

  • Lehman, E.L. (1975). Nonparametrics. (San Fracisco: Holden Day Pub.).

    Google Scholar 

  • Love, J.M., Knight, A.M., McAleer, M.A., Todd, J.A. (1990). Towards construction of a high resolution map of the mouse genome using PCR analyzed microsatellites. Nucleic Acids Res, 18, 4123–4130.

    Google Scholar 

  • Malkinson, A.M., Nesbitt, M.N., Skamene, E. (1985). Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6 mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J. Natl. Cancer Inst. 75, 971–974.

    Google Scholar 

  • Manly, K.F. (1993). A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome 4, 303–313.

    Google Scholar 

  • Miyashita, N., Moriwaki, K., Migita, S. (1989). The H-2 class II genes and the susceptibility to the development of pulmonary adenoma in mice. Immunogenetics 29, 14–18.

    Google Scholar 

  • Oomen, L.C., van der Valk, M.A., Demant, P. (1991). MHC and non-MHC genes in lung tumor susceptibility in the mouse: implications for the study of the different lung tumor types and their cell of origin. Exp. Lung Res. 17, 283–304.

    Google Scholar 

  • Reynolds, S.H., Anna, C.K., Brown, K.C., Wiest, J.S., Beattie, E.J., Pero, R.W., Iglehart, J.D., Anderson, M.W. (1991). Activated protooncogenes in human lung tumors from smokers. Proc. Natl. Acad. Sci. USA 88, 1085–1089.

    Google Scholar 

  • Rochelle, J.M., Watson, M.L., Oakley, R.J., Seldin, M.F. (1992). A linkage map of mouse chromosome 19: definition of comparative mapping relationships with human chromosomes 10 and 11 including the MEN1 locus. Genomics 14, 26–31.

    Google Scholar 

  • Ryan, J., Barker, P.E., Nesbitt, M.N., Ruddle, F.H. (1987). KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J. Natl. Cancer Insti. 79, 1351–1357.

    Google Scholar 

  • Sellers, T.A., Potter, J.D., Bailey-Wilson, J.E., Rich, S.S., Rothschild, H., Elston, R.C. (1992). Lung cancer detection and prevention: evidence for an interaction between smoking and genetic disposition. Cancer Res. (Suppl.) 52, 2694s-2697s.

    Google Scholar 

  • Shimkin, M.B., Stoner, G.D. (1975). Lung tumors in mice: application to carcinogenesis bioassay. Adv. Cancer Res. 21, 1–58.

    Google Scholar 

  • Stoner, G.D. (1984). Lung tumor burden in A/J mice at risk given a single dose of ENU. Toxicol. Appl. Pharmacol. 72, 313–323.

    Google Scholar 

  • Watson, M.L., Rao, J.K., Gilkeson, G.S., Ruiz, P., Eicher, E.M., Pisetsky, D.S., Matsuzawa, A., Rochelle, J.M., Seldin, M.F. (1992). Genetic analysis of MRL-lpr mice: relationship of the fas apoptosis gene to discase manifestations and renal disease-modifying loci. J. Exp. Med. 176, 1645–1656.

    Google Scholar 

  • Wilkie, T.M., Scherle, P.A., Strathmann, M.P., Slepak, V.Z., Simon, M.L. (1991). Characterization of G-protein α subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl. Acad. Sci. USA 88, 10049–10053.

    Google Scholar 

  • Wiseman, R.W., Cochran, C., Dietrich, W., Lander, E.S., Soderkvist, P. (1994). Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human tumor suppressor genes. Proc. Natl. Acad. Sci. USA 91, 3759–3763.

    Google Scholar 

  • Wright, S. (1968). Evolution and the Genetics of Populations, Vol 1. Genetic and Biometric Foundation. (Chicago: University of Chicago Press).

    Google Scholar 

  • You, M., Candrian, U., Maronpot, R.R., Stoner, G.D., Anderson, M.W. (1989). Activation of the K-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc. Natl. Acad. Sci. USA 86, 3070–3074.

    Google Scholar 

  • You, M., Yang, Y., Stoner, G., You, L., Maronpot, R.R., Reynolds, S.H., Anderson, M.W. (1992). Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. Proc. Natl. Acad. Sci. USA 89, 5804–5808.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devereux, T.R., Wiseman, R.W., Kaplan, N. et al. Assignment of a locus for mouse lung tumor susceptibility to proximal Chromosome 19. Mammalian Genome 5, 749–755 (1994). https://doi.org/10.1007/BF00292007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292007

Keywords

Navigation