Skip to main content
Log in

The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria

  • Original Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Pseudomonad bacterial are a phylogenetically diverse assemblage of species named within contemporary genera that includePseudomonas, Xanthomonas andAlcaligenes. Thus far, five distinct rRNA homology groups (Groups I through V) have been established by oligonucleotide cataloging and by rRNA/DNA hybridization. A pattern of enzymic features of aromatic amino acid biosynthesis (enzymological patterning) is conserved at the level of rRNA homology, five distinct and unambiguous patterns therefore existing in correspondence with the rRNA homology groups. We sorted 87 pseudomonad strains into Groups (and Subgroups) by aromatic pathway patterning. The reliability of this methodology was tested in a blind study using coded cultures of diverse pseudomonad organisms provided by American Type Culture Collection. Fourteen of 14 correct assignments were made at the Group level (the level of rRNA homology), and 12 of 14 correct assignments were made at the finer-tuned Subgroup levels. Many strains of unknown rRNA-homology affiliation had been placed into tentative rRNA groupings based upon enzymological patterning. Positive confirmation of such strains as members of the predicted rRNA homology groups was demonstrated by DNA/rRNA hybridization in nearly every case. It seems clear that the combination of these molecular approaches will make it feasible to deduce the evolution of biochemical-pathway construction and regulation in parallel with the emerging phylogenies of microbes housing these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    PubMed  Google Scholar 

  2. Byng GS, Whitaker RJ, Gherna RL, Jensen RA (1980) Variable enzymological patterning in tyrosine biosynthesis as a means of determing natural relatedness among thePseudomonadaceae. J Bacteriol 144:247–257

    PubMed  Google Scholar 

  3. Whitaker RJ, Byng GS, Gherna RL, Jensen RA (1981a) Comparative allostery of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase as an indicator of taxonomic relatedness in pseudomonad genera. J Bacteriol 145:752–759

    PubMed  Google Scholar 

  4. Whitaker RJ, Byng GS, Gherna RL, Jensen RA (1981b) Diverse enzymological patterns of phenylalanine biosynthesis in pseudomonads are conserved in parallel with deoxyribonucleic acid homology groupings. J Bacteriol 147: 526–534

    PubMed  Google Scholar 

  5. Jensen RA, Rebello JL (1970) Comparative allostery of microbial enzymes at metabolic branch-points: evolutionary implications. In: Corum CJ (ed) Devel Indust Microbiol, Plenum Press, New York 11:105–121

    Google Scholar 

  6. Jensen RA (1976) Enzyme recruitment in evolution of new function. Ann Rev Microbiol 30:409–425

    Article  Google Scholar 

  7. Byng GS, Kane JF, Jensen RA (1982) Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit Rev Microbiol 9: 227–252

    PubMed  Google Scholar 

  8. Cohen GN, Stainer RY, LeBras G (1969) Regulation of biosynthesis of amino acids of the aspartate family in coliform bacteria and pseudomonads. J Bacteriol 99:791–801

    PubMed  Google Scholar 

  9. Jensen RA (1969) Metabolic interlock: regulatory interactions exerted between biochemical pathways. J Biol Chem 244:2816–2823

    PubMed  Google Scholar 

  10. Baumann L, Baumann P (1978) Studies of relationships among terrestrialPseudomonas, Alcaligenes, and enterobacteria by an immunological comparison of glutamine synthetase. Arch Microbiol 119:25–30

    Article  PubMed  Google Scholar 

  11. Palleroni NJ, Kunizawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genusPseudomonas. Int J Syst Bacteriol 23:333–339

    Google Scholar 

  12. Palleroni NJ, Ballard RW, Ralston E, Doudoroff M (1972) Deoxyribonucleic acid homologies among somePseudomonas species. J Bacteriol 110:1–11

    PubMed  Google Scholar 

  13. Stackebrandt W, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and Cellular Aspects of Microbial Evolution, 32nd Symp Soc Gen Microbiol, Cambridge Univ Press, Cambridge, pp 1–32

    Google Scholar 

  14. Blanz P, Hahn CM, Woese CR (1983) Manuscript in preparation

  15. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  16. Johnson JL (1981) Genetic characterization. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 450–472

    Google Scholar 

  17. Tereba A, McCarthy BJ (1973) Hybridization of125I-labelled ribonucleic acid. Biochemistry 12:4675–4679

    Article  PubMed  Google Scholar 

  18. Selin YM, Harich B, Johnson JL (1983) Preparation of labeled nucleic acid (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr Microbiol 8:127–132

    Article  Google Scholar 

  19. Patel N, Pierson DL, Jensen RA (1977) Dual enzymatic routes toL-tyrosine andL-phenylalanine via pretyrosine inPseudomonas aeruginosa. J Biol Chem 252:5839–5846

    PubMed  Google Scholar 

  20. Calhoun DH, Pierson DL, Jensen RA (1973) Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point inPseudomonas aeruginosa. J Bacteriol 113:241–251

    PubMed  Google Scholar 

  21. Shapiro CL, Jensen RA, Wilson KA, Bowen JR (1981) An assay for activity of arogenate dehydratase based upon the selective oxidation of arogenate. Anal Biochem 110:27–30

    Article  PubMed  Google Scholar 

  22. Stenmark SL, Pierson DL, Glover GI, Jensen RA (1974) Blue-green bacteria synthesizeL-tyrosine by the pretyrosine pathway. Nature 247:290–292

    Article  PubMed  Google Scholar 

  23. Jensen RA, Stenmark SL (1975) The ancient origin of a second microbial pathway ofL-tyrosine biosynthesis in prokaryotes. J Mol Evol 4:249–259

    Article  Google Scholar 

  24. Jensen RA, Pierson DL (1975) Evolutionary implications of different types of microbial enzymology forL-tyrosine biosynthesis. Nature 254:667–671

    Article  PubMed  Google Scholar 

  25. Patel N, Stenmark-Cox S, Jensen RA (1978) Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine inPseudomonas aeruginosa. J Biol Chem 253:2972–2978

    PubMed  Google Scholar 

  26. Fazel AM, Jensen RA (1979a) Obligatory biosyntesis ofL-tyrosine via the pretyrosine branchlet in coryneform bacteria. J Bacteriol 138:805–815

    PubMed  Google Scholar 

  27. Fazel AM, Jensen RA (1979b) Aromatic aminotransferases in species of coryneform bacteria. J Bacteriol 140:580–587

    PubMed  Google Scholar 

  28. Byng GS, Whitaker RJ, Shapiro CL, Jensen RA (1981) The aromatic amino acid pathway branches atL-arogenate inEuglena gracilis. Mol Cell Biol 1:426–438

    PubMed  Google Scholar 

  29. Zamir LO, Fiske MJ, Tiberio R, Jensen RA (1983) (in preparation)

  30. Huang L, Montoya AL, Nester EW (1974a) Characterization of the functional activities of the subunits of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase-chorismate mutase fromBacillus subtilis 168. J Biol Chem 249: 4473–4479

    PubMed  Google Scholar 

  31. Huang L, Nakatsukasa WM, Nester EW (1974b) Regulation of aromatic amino acid biosynthesis inBacillus subtilis 168. J Biol Chem 249:4467–4472

    PubMed  Google Scholar 

  32. Hasan N, Nester EW (1978a) Purification and characterization of NADPH-dependent flavin reductase. J Biol Chem 253:4987–4992

    PubMed  Google Scholar 

  33. Hasan N, Nester EW (1978b) Purification and properties of chorismate synthase fromBacillus subtilis. J Biol Chem 253:4993–4998

    PubMed  Google Scholar 

  34. Hasan N, Nester EW (1978c) Dehydroquinate synthase inBacillus subtilis. J Biochem 253:4999–5004

    Google Scholar 

  35. Shiio I, Sugimoto S (1979) Two components of chorismate mutase inBrevibacterium flavum. J Biochem 86:17–25

    PubMed  Google Scholar 

  36. Jensen RA, Byng GS (1981) The partitioning of biochemical pathways with isozyme systems. In: Ratazzi MC, Scandalios JG, Whitt GS (eds) Isozymes: Curr Top Biol Med Res, Alan R. Liss, Inc., New York Vol 5, pp 143–174

    Google Scholar 

  37. Gillis M, DeLey J (1980) Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons ofAcetobacter andGluconobacter. Int J Syst Bacteriol 30:7–27

    Google Scholar 

  38. Buchanan RE, Gibbons NE (1976) Bergey's Manual of determinative bacteriology 8th ed. The Williams and Wilkins Co., Baltimore

    Google Scholar 

  39. DeSmedt J, DeLey J (1977) Intra- and intergeneric similarities ofAgrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 27:222–240

    Google Scholar 

  40. DeLey J, Seghers P, Gillis M (1978) Intra- and intergeneric similarities ofChromobacterium andJanthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 28: 154–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byng, G.S., Johnson, J.L., Whitaker, R.J. et al. The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J Mol Evol 19, 272–282 (1983). https://doi.org/10.1007/BF02099974

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099974

Key words

Navigation