Skip to main content
Log in

Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Brush border membrane vesicles (BBMV) purified from steer jejunum were used to study the kinetics of sodiumd-glucose cotransport under voltage clamped, zero-trans conditions. When the initial rate of glucose transport (J gluc) was measured over a wide range of glucose concentrations ([S]=0.01–20mm), curvature of the Woolf-Augustinsson-Hofstee plots was seen, compatible with a diffusional and one major, high capacity (maximal transport rateJ max=5.8–8.8 nmol/mg·min) saturable system. Further studies indicated that changes incis [Na] altered theK t , but not theJ max, suggesting the presence of a rapid-equilibrium, ordered bireactant system with sodium adding first.Trans sodium inhibitedJ gluc hyperbolically. KCl-valinomycin diffusion potentials, inner membrane face positive, loweredJ gluc, while potentials of the opposite polarity raiseJ gluc. At low glucose concentrations ([S]<0.05mm), a second, minor, high affinity transport system was indicated. Further evidence for this second saturable system was provided by sodium activation curves, which were hyperbolic when [S]=0.5mm, but were sigmoidal when [S]=.0.01mm. Simultaneous fluxes of22Na and [3H]glucose at 1mm glucose and 30mm NaCl yielded a cotransport-dependent flux ratio of 2∶1 sodium/glucose, suggestive of 1∶1 (Na/glucose) high capacity, low affinity system and a ∼3∶1 (Na/glucose) high affinity, low capacity system. Kinetic experiments with rabbit jejunal brush borders revealed two major Na-dependent saturable systems. Extravesicular (cis) Na changed theK t , but not theJ max of the major system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, P.S., Sacktor, B. 1975. The Na+ gradient-dependent transport ofd-glucose in renal brush border membranes.J. Biol. Chem. 250:6032–6039

    PubMed  Google Scholar 

  • Booman, K.A., Neiman, C. 1956. The empirical evaluation of the initial velocities of enzyme-catalyzed reactions.J. Am. Chem. Soc. 78:3642–3646

    Google Scholar 

  • Crane, R.K., Dorando, F.C. 1982. The kinetics and mechanism of Na+ gradient-coupled glucose transport.In: Membranes and Transport. Vol. 2, pp. 153–60. A. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Crane, R.K., Miller, D., Bihler, I. 1961. The restrictions on possible mechanisms of active transport of sugars.In: Membrane Transport and Metabolism. pp. 439–449. A. Kleinzeller and A. Kotyk, editors. Czechoslovak Academy of Science, Prague

    Google Scholar 

  • Cuppoletti, J., Segel, I.H. 1975. Kinetic analysis of active membrane transport systems: Equations for net velocity and isotope exchange.J. Theor. Biol. 53:125–144

    PubMed  Google Scholar 

  • Gunther, R.D., Schell, R.E., Wright, E.M. 1984. Ion permeability of rabbit intestinal brush border membrane vesicles.J. Membrane Biol. 78:119–127

    Google Scholar 

  • Hopfer, U. 1977. Kinetics of Na+-dependentd-glucose transport.J. Supramol. Struct. 7:1–13

    PubMed  Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanisms of Na+-dependentd-glucose transport.J. Biol. Chem. 255:4453–4462

    PubMed  Google Scholar 

  • Hopfer, U., Nelson, K., Perotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25–32

    PubMed  Google Scholar 

  • Kaunitz, J.D., Gunther, R., Wright, E.M. 1982. Involvement of multiple sodium ions in intestinald-glucose transport.Proc. Natl. Acad. Sci. USA 79:2315–2318

    PubMed  Google Scholar 

  • Kessler, M., Semenza, G. 1983. The small intestinal Na+,d-glucose contransporter: An assymetric gated channel for pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  • Kessler, M., Tannenbaum, V., Tannenbaum, C. 1978. A simple apparatus for performing short time (1–2 seconds) uptake measurements in small volumes; its application tod-glucose transport studies in brush border vesicles from rabbit jejunum and ileum.Biochim. Biophys. Acta 509:348–359

    PubMed  Google Scholar 

  • Kimmich, G.A., Carter-Su, C. 1978. Membrane potentials and the energetics of intestinal Na+-dependent transport systems.Am. J. Physiol. 253:C73–81

    Google Scholar 

  • Ling, K.Y., Im, W.B., Faust, R.G. 1981. Na+=independent sugar uptake by rat intestinal and renal brush border and basolateral membrane vesicles.Int. J. Biochem. 13:693–700

    PubMed  Google Scholar 

  • Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Natl. Acad. Sci. USA 71:484–488

    PubMed  Google Scholar 

  • Schell, R.E., Stevens, B.R., Wright, E.M. 1983. Kinetics of Na-dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye.J. Physiol. (London) 335:307–318

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Segel, I.H. 1975. Enzyme Kinetics. Wiley, New York

    Google Scholar 

  • Stevens, B.R., Ross, H.J., Wright, E.M. 1982a. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles.J. Membrane Biol. 66:213–225

    Google Scholar 

  • Stevens, B.R., Wright, S.H., Hirayama, B.S., Gunther, R.D., Ross, H.J., Harms, V., Nord, E., Kippen, I., Wright, E.M. 1982b. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen.Membr. Biochem. 4:271–282

    PubMed  Google Scholar 

  • Toggenburger, G., Kessler, M., Semenza, G. 1982. Phlorizin is a probe of the small intestinal Na+,d-glucose cotransporter: A Model.Biochim. Biophys. Acta 649:269–280

    Google Scholar 

  • Turner, R.J. 1981. Kinetic analysis of a family of cotransport models.Biochim. Biophys. Acta 649:269–280

    PubMed  Google Scholar 

  • Turner, R.J., Moran, A. 1982. Further studies of proximal tubular brush border membraned-glucose transport heterogeneity.J. Membrane Biol. 70:37–45

    Google Scholar 

  • Wright, S.H., Hirayama, B.H., Kaunitz, J.D., Kippen, I., Wright, E.M. 1983. Kinetics of sodium-succinate cotransport across renal brush border membranes.J. Biol. Chem. 258:5456–5462

    PubMed  Google Scholar 

  • Wright, S.H., Kippen, I., Wright, E.M. 1982. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.J. Biol. Chem. 257:1773–1778

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaunitz, J.D., Wright, E.M. Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles. J. Membrain Biol. 79, 41–51 (1984). https://doi.org/10.1007/BF01868525

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868525

Key Words

Navigation