Skip to main content
Log in

Structure and identification of root bark of Quercus robur L.

  • Published:
Trees Aims and scope Submit manuscript

Abstract

The root bark structure of Quercus robur L. was analysed at different stages of root development and compared to the structure of stem bark. Root bark thickness varied considerably between different roots. Sclereid quantity decreased with increasing distance from the stem, which means it increased with age. Visible growth increments diminished with increasing distance from the stem. In lateral roots crystal quantity decreased with increasing distance from the stem. In lateral roots secondary phloem fibre length, sieve tube member length, and sieve tube diameter showed no regular trend. There were only a few basic structural differences between root and stem bark. The zone of cell differentiation (cell expansion, lignification) was wider in root bark; sieve tube collapse was delayed. In lateral root bark fewer sclereids were formed. The first-formed periderm often originated from deeper cell layers. Thus, primary elements were lacking after periderm formation. In root bark the phellem cell walls were of equal thickness. Thus, phellem lacked visible growth increments. Root bark phellem cells were slightly larger. The root phelloderm was more distinct. The secondary phloem fibres were slightly shorter than those in stem bark. Sieve tube members of stem and root bark were of similar length and diameter. The qualitative bark anatomical characters of oak root bark are suitable for root identifications. Due to minor structural differences between root and stem bark the characters must be used with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179–204

    Google Scholar 

  • Aloni R, Gad AE (1982) Anatomy of the primary phloem fiber system in Pisum sativum. Am J Bot 69: 979–984

    Google Scholar 

  • Alten H von (1908) Beiträge zur vergleichenden Anatomie der Wurzeln, nebst Bemerkungen über Wurzelthyllen, Heterorhizie, Lenticellen. Dissertation, University of Göttingen

  • Archer RH, Wyk AE van (1993) Bark structure and intergeneric relationships of some African Cassinoideae (Celastraceae). IAWA J 14: 35–53

    Google Scholar 

  • Blunden G, Aye Kyi, Jewers K (1974) The comparative stem and root anatomy of Goniothalamus andersonii, G. macrophyllus, G. malayanus and G. velutinus (Annonaceae) from the peat swamps of Sarawak. Bot J Linn Soc 68: 209–225

    Google Scholar 

  • Casparis P (1918) Beiträge zur Anatomie der Simarubaceenrinden. Dissertation, University of Basel

  • Chang YP (1954) Anatomy of common North American pulpwood barks. TAPPI Monographs Series No 14

  • Cheadle VI, Esau K (1958) Secondary phloem of Calycanthaceae. Univ Calif Publ Bot 29: 60–67

    Google Scholar 

  • Cutler DF, Rudall PJ, Gasson PE, Gale RMO (1987) Root identification manual of trees and shrubs. Chapman and Hall, London

    Google Scholar 

  • Datta SK, Datta PC (1976) Bark drugs of Plumeria. Q J Crude Drug Res 14: 129–142

    Google Scholar 

  • Douliot H (1889) Recherches sur le périderme. Ann Sci Nat Bot 10: 325–395

    Google Scholar 

  • Eremin VM, Maksimov VM (1973) Differences in the anatomical structure of root bark and stem bark of Scots Pine (in Russian). Lesnoi Zhurnal (Voronezh) 16: 5–9

    Google Scholar 

  • Eremin VM, Sivak SV (1977) Differences of root bark and stem bark in some conifers (in Russian). Lesnoi Zhurnal (Voronezh) 20: 5–9

    Google Scholar 

  • Esau K (1969) The phloem. Handbuch der Pflanzenanatomie, vol 5/2. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants. 2nd edn. Wiley, New York

    Google Scholar 

  • Esau K, Cheadle VI (1955) Significance of cell divisions in differentiating secondary phloem. Acta Bot Neerl 4: 346–357

    Google Scholar 

  • Gasson PE (1979) The identification of eight woody genera of the Caprifoliaceae by selected features of their root anatomy. Bot J Linn Soc 78: 267–284

    Google Scholar 

  • Gerlach D (1969) Botanische Mikrotechnik. Thieme, Stuttgart

    Google Scholar 

  • Haberlandt G (1918) Physiologische Pflanzenanatomie. 5th edn. W Engelmann, Leipzig

    Google Scholar 

  • Holdheide W (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freund H (ed) Handbuch der Mikroskopie in der Technik, vol V/1. Umschau, Frankfurt/Main, pp 193–367

    Google Scholar 

  • Huber B (1939) Das Siebröhrensystem unserer Bäume und seine jahreszeitlichen Veränderungen. Jahrb Wiss Bot 88: 176–242

    Google Scholar 

  • Kny L (1908) Ueber das Dickenwachstum des Holzkörpers der Wurzeln in seiner Beziehung zur Lotlinie. Ber Dtsch Bot Ges 26: 19–50

    Google Scholar 

  • Liese J (1926) Beiträge zur Kenntnis des Wurzelsystems der Kiefer (Pinus sylvestris). Habilitationsschrift Forstliche Hochschule Eberswalde. Springer, Berlin Heidelberg New York

    Google Scholar 

  • MacDaniels LH (1918) The histology of the phloem in certain woody angiosperms. Am J Bot 5: 347–378

    Google Scholar 

  • Parameswaran N, Liese W (1968) Beitrag zur Rindenanatomie der Gattung Entandophragma. Flora (Jena) Abt B 158: 22–40

    Google Scholar 

  • Riedel H (1937) Bau und Leistungen des Wurzelholzes. Dissertation Technische Hochschule Dresden. Gebrüder Borntraeger, Leipzig

    Google Scholar 

  • Rusch J (1973) Vergleichende anatomische Untersuchungen des Holzes von Wurzel und Stamm bei verschiedenen Laubbaumarten. Dissertation, University of Freiburg

  • Trockenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bull ns 11: 141–166

    Google Scholar 

  • Trockenbrodt M (1991) Qualitative structural changes during bark development in Quercus robur, Ultnus glabra, Populus tremula and Betula pendula. IAWA Bull ns 12: 5–22

    Google Scholar 

  • Trockenbrodt M (1994) Quantitative changes of some anatomical characters during bark development in Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. IAWA J 15: 387–398

    Google Scholar 

  • Trockenbrodt M (1995) Calcium oxalate crystals in the bark of Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. Ann Bot 73 (in press)

  • Vurdu H, Bensend DW (1979) Specific gravity and fiber length in European Black Alder roots, branches, and stems. Wood Sci 12: 103–105

    Google Scholar 

  • Wieler A (1891) Ueber die Beziehung zwischen Wurzel- und Stammholz. Tharandter Forstl Jahrb 41: 143–171

    Google Scholar 

  • Wyk AE van (1985) The genus Eugenia (Myrtaceae) in southern Africa: structure and taxonomic value of the bark. S Afr J Bot 51: 157–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trockenbrodt, M. Structure and identification of root bark of Quercus robur L.. Trees 9, 341–347 (1995). https://doi.org/10.1007/BF00202498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202498

Key words

Navigation