Skip to main content
Log in

Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Using data from in situ hybridization of the giant chromosomes from salivary glands, we have studied hobo mobile element copy numbers in 17 genomes of highly inbred lines of Drosophila melanogaster. A high number of insertions in the 3R arm and a high variance in total copy number characterize the hobo element. The genomic control of copy number (a compensatory effect among chromosome arms) detected previously for mdg-1, I and copia but not for P, was not found for hobo either, and there is no relation between the P and hobo copy numbers per line. From the DNA structure and putative mechanisms of transposition of each element, we suggest that the mechanism of transposition, involving either a reverse transcriptase or a transposase, is a good criterion for determining the way the copy number is regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhipova IR, Mazo AM, Cherkasova VA, Gorelova TV, Schuppe NG, Ilyin YV (1986) The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs. Cell 44:555–563

    Google Scholar 

  • Belyaeva ESp, Ananiev EV, Gvozdev VA (1984) Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90:16–19

    Google Scholar 

  • Biémont C (1986) Polymorphism of the Mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93:393–397

    Google Scholar 

  • Biémont C, Aouar A (1987) Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58:39–47

    Google Scholar 

  • Biémont C, Gautier C (1988) Localization polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity (in press)

  • Biémont C, Belyaeva ESp, Pasyukova EG, Kogan C (1985) Mobile gene localization and viability in Drosophila melanogaster. Experientia 41:1474–1476

    Google Scholar 

  • Biémont C, Aouar A, Arnault C (1987) Genome reshuffling of the copia element in a Drosophila melanogaster inbred line. Nature 329:742–744

    Google Scholar 

  • Blackman RK, Grimaila R, Macy M, Koehler D, Gilbart WM (1987) Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49:497–505

    Google Scholar 

  • DiNocera PP, Casari G (1987) Related polypeptides are encoded by Drosophila F elements, I factors, and mammalian L1 sequences. Proc Natl Acad Sci USA 84:5843–5847

    Google Scholar 

  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K (1985) The nucleotide sequences of Copia-related RNA in Drosophila virus-like particles. Nature 315:773–776

    Google Scholar 

  • Engels WR (1984) A trans-acting product needed for P factor transposition in Drosophila. Science 226:1194–1196

    Google Scholar 

  • Fawcett DH, Lister CK, Kellet E, Finnegan DJ (1986) Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47:1007–1015

    Google Scholar 

  • Georgiev GP (1984) Mobile genetic elements in animal cells and their biological significance. Eur J Biochem 145:203–220

    Google Scholar 

  • Gerasimova TI, Mizrokhi LJ, Georgiev GP (1984) Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309:714–716

    Google Scholar 

  • Karess RE, Rubin GM (1984) Analysis of P transposable element functions in Drosophila. Cell 38:135–146

    Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79:4381–4385

    Google Scholar 

  • Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7–19

    Google Scholar 

  • Leigh Brown AJ, Moss JE (1987) Transposition of the I element and Copia in a natural population of Drosophila melanogaster. Genet Res 49:121–128

    Google Scholar 

  • Lewis AP, Brookfield JFY (1987) Movement of Drosophila melanogaster transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol Gen Genet 208:506–510

    Google Scholar 

  • McGinnis W, Shermoen AW, Beckendorf SK (1983) A transposable element inserted just 5′ to a drosophila glue protein gene alters gene expression and chromatin structure. Cell 34:75–84

    Google Scholar 

  • Montgomery EA, Langley CH (1983) Transposable elements in Mendelian populations. II. Distribution of copia-like elements in natural populations. Genetics 104:473–483

    Google Scholar 

  • Montgomery EA, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41

    Google Scholar 

  • O'Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25–35

    Google Scholar 

  • Parkhurst SM, Corces VG (1987) Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J 6:419–424

    Google Scholar 

  • Pasyukova EG, Belyaeva ESp, Kogan GL, Kaïdanov LZ, Gvozdev VA (1986) Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol Biol Evol 3:299–312

    Google Scholar 

  • Rigby PW, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Ronsseray S, Anxolabéhère D (1986) Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94:433–440

    Google Scholar 

  • Satta Y, Gojobori T, Maruyama T, Chigusa SI (1985) Tn3 resolvase-like sequence in P transposable element of Drosophila melanogaster. Jpn J Genet 60:261–266

    Google Scholar 

  • Simmons MJ, Buckholz LM (1985) Transposase titration in Drosophila melanogaster: a model for cytotype in the P-M system of hybrid dysgenesis. Proc Natl Acad Sci USA 82:8119–8123

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Sciences 218:341–347

    Google Scholar 

  • Streck RD, MacGaffey JE, Beckendorf SK (1986) The structure of hobo transposable element and their insertion sites. EMBO J 5:3615–3623

    Google Scholar 

  • Woodruff RC, Blount JL, Thompson JN Jr (1987) Hybrid dysgenesis in Drosophila melanogaster is not a general release mechanism for DNA transpositions. Science 237:1206–1208

    Google Scholar 

  • Yannopoulos G, Stamatis N, Monasterioti M, Hatzopoulos P (1987) Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49:487–495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biémont, C., Gautier, C. & Heizmann, A. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96, 291–294 (1988). https://doi.org/10.1007/BF00286916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286916

Keywords

Navigation