Skip to main content
Log in

Textural evolution of the rapakivi granites, south Greenland —Sr, O and H isotopic investigations

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The development of rapakivi texture in feldspars from the Ketilidian granitoids of south Greenland has been investigated using Sr, O and H isotopes. A low temperature signature is found in the Sr and O data which seemingly contradicts some textural features that point to a magmatic origin of the plagioclase mantles around the K-feldspar ovoids. An origin for these mantles involving exsolution from an original alkali feldspar solid solution is proposed, which involves growth of mantles over a range of conditions determined by the mobility of the exsolving sodic feldspar. This mobility may be enhanced at high temperatures in the presence of melts or increased fluid pressures and at lower temperatures by the processes responsible for the transformation of K-feldspar to microcline. Rapakivi granites with both white and dark green feldspar occur in south Greenland but show no major isotopic differences, although the dark alkali feldspars contain significantly more fluid. Equivalent fluids in the white alkali feldspars may have escaped during plagioclase exsolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott RN Jr (1978) Peritectic reactions in the system An−Ab−Or−Qz−H2O. Can Mineral 16:245–256

    Google Scholar 

  • Allaart JH (1976) Ketilidian mobile belt in South Greenland. In: Escher A, Watt WS (eds) Geology of Greenland. Gronland Geol Unders. Copenhagen, pp 121–151

    Google Scholar 

  • Bachinski SW, Mueller G (1971) Experimental determinations of the microcline-low albite solvus. J Petrol 12:329–356

    Google Scholar 

  • Borthwick J, Harmon RS (1982) A note regarding CIF3 as an alternative to BrF5 for oxygen isotope analysis. Geochim Cosmochim Acta 46:1665–1668

    Google Scholar 

  • Bottinga Y, Javoy M (1975) Oxygen isotope partitioning among minerals in igneous and metamorphic rocks. Rev Geophys Space Phys 13:401–418

    Google Scholar 

  • Brigham RII, O'Neil JR (1985) Genesis and evolution of water in a two-mica pluton: a hydrogen isotope study. Chem Geol 49:159–177

    Google Scholar 

  • Brown WL, Becker SM, Parsons I (1983) Cryptoperthites and cooling rate in a layered syenite pluton: A chemical and TEM study. Contrib Mineral Petrol 82:13–25

    Google Scholar 

  • Brown WL, Parsons I (1989) Alkali feldspars: ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineral Mag 53:25–42

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extrraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Dawes PR (1966) Genesis of rapakivi. Nature 209:569–571

    Google Scholar 

  • Dempster TJ (1986) Isotope systematics in minerals: biotite rejuvenation and exchange during Alpine metamorphism. Earth Planet Sci Lett 78:355–367

    Google Scholar 

  • Elliston JN (1985) Rapakivi texture: an indication of the crystallization of hydrosilicates, 2. Earth Sci Rev 22:1–92

    Google Scholar 

  • Elphick SC, Graham CM, Dennis PF (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite: a comparison with hydrothermal data and some geological implications. Contrib Mineral Petrol 100:490–495

    Google Scholar 

  • Farver JR, Giletti BJ (1989) Oxygen and strontium diffusion kinetics in apatite and potential application to thermal history determinations. Geochim Cosmochim Acta 53:1621–1631

    Google Scholar 

  • Friedman I, Smith RL (1958) The deuterium content of water in volcanic glass. Geochim Cosmochim Acta 15:218–228

    Google Scholar 

  • Frost BR, Frost CD (1987) CO2 melts and granulite metamorphism. Nature 327:503–506

    Google Scholar 

  • Geist DJ, Myers JD, Frost CD (1988) Megacryst — bulk rock disequilibrium as an indicator of contamination processes: The Edgecumbe Volcanic Field, Southeast Alaska. Contrib Mineral Petrol 99:105–112

    Google Scholar 

  • Giletti BJ, Anderson TF (1975) Studies in diffusion — II. Oxygen in phlogopite mica. Earth Planet Sci Lett 28:225–233

    Google Scholar 

  • Gulson BL, Krogh TE (1975) Evidence of multiple intrusion, possible resetting of U−Pb ages, and new crystallization of zircons in the post-tectonic intrusions (‘Rapakivi granites’) and gneisses from south Greenland. Geochim Cosmochim Acta 39:65–82

    Google Scholar 

  • Halliday AN, Fallick AE, Dickin AP, Mackenzie AB, Stephens WE, Hildreth W (1983) The isotopic and chemical evolution of Mount St. Helens. Earth Planet Sci Lett 63:241–256

    Google Scholar 

  • Harrison TN, Dempster TJ, Hutton DHW, Brown PE (1991) Low pressure granulites from the Ketilidian Mobile Belt of southern Greenland. J Petrology (submitted)

  • Harrison TN, Parsons I, Brown PE (1990) Fayalite-bearing rapakivi granites from the Prins Christians Sund pluton, south Greenland. Mineral Mag 54:57–64

    Google Scholar 

  • Hawkes J (1967) Rapakivi texture in the Dartmoor Granite. Proc Usher Soc 1:270–272

    Google Scholar 

  • Hibbard MJ (1981) The magma mixing origin of mantled feldspar. Contrib Mineral Petrol 76:158–170

    Google Scholar 

  • Hughes CJ (1982) Igneous petrology. Elsevier, Amsterdam

    Google Scholar 

  • Hutchinson RM (1956) Structure and petrology of Enchanted Rock batholith, Llano and Gillespie counties, Texas. Bull Geol Soc Am 67:763–806

    Google Scholar 

  • Hutton DHW, Dempster TJ, Brown PE, Becker SM (1990) A new mechanism of granite emplacement: rapakivi intrusions in active extensional shear zones, south Greenland. Nature 343:452–454

    Google Scholar 

  • Jäger E (1979) Introduction to geochronology. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Kuroda Y, Yameda T, Fujimoto K, Suzuoki T, Matsuo S (1978) Hydrogen isotope study on biotite and hornblende from Finnish granitic rocks. Geochem J 12:259–263

    Google Scholar 

  • Manning DAC, Pichavant M (1983) The role of fluorine and boron in the generation of granitic melts. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism, Shiva, Nantwich, UK, pp 94–109

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Google Scholar 

  • Morse SA (1970) Alkali feldspars with water at 5 Kb pressure. J Petrol 11:221–251

    Google Scholar 

  • Niggli P (1923) Gesteins- und Mineralprovinzen (in German). Band 1: Einführungen Berlin

  • O'Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in mineralogy, Min Soc Am 16:1–40

  • O'Neil JR, Taylor HP Jr (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • Parsons I (1978) Feldspars and fluids in cooling plutons. Mineral Mag 42:1–17

    Google Scholar 

  • Rundkvist ND (1989) Composition and structure of alkali feldspar ovoids of rapakivi granites and succession of their formation. Geol Surv Finland Spec Paper 8:114

    Google Scholar 

  • Savolahti A (1962) The rapakivi problem and the rules of idiomorphism in minerals. Bull Comm Geol Finland 204:15–67

    Google Scholar 

  • Sederholm JJ (1891) Über die finnländischen Rapakiwigesteine. Tschermaks Mineral Petrol Mitt 12:1–31

    Google Scholar 

  • Shaw HR (1963) Obsidian — H2O viscosities at 1000 and 2000 bars and in the temperature range 700–900° C. J Geophys Res 68:6337–6343

    Google Scholar 

  • Sipling PJ, Yund RA (1976) Experimental determination of the coherent solvus for sanidine-high albite. Am Mineral 61:897–906

    Google Scholar 

  • Smith P, Parsons I (1974) The alkali-feldspar solvus at 1 kilobar water-vapour pressure. Mineral Mag 39:747–767

    Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Google Scholar 

  • Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Google Scholar 

  • Taylor HP Jr (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP Jr, Sheppard SMF (1986) Igneous rocks: 1. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in mineralogy. Min Soc Am 16:227–271

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8−KAlSi3O8−SiO2−H2O. Mem Geol Soc Am 74:1–153

    Google Scholar 

  • Van Breemen O, Aftalion M, Allaart JH (1974) Isotopic and geochronologic studies on granites from the Ketilidian Mobile Belt of south Greenland. Bull Geol Soc Am 85:403–412

    Google Scholar 

  • Velikoslavinskiy DA (1953) Petrology of the Wiborg rapakivi massive (in Russian) Tr Labor Geol Dokembrija An SSSR, 3

  • Vollmer R, Johnson K, Giara MR, Lirer L, Munno R (1981) Sr isotope geochemistry of megacrysts from continental rift and convergent plate margin alkaline volcanism in south Italy. J Volcan Geotherm Res 11:314–327

    Google Scholar 

  • Vorma A (1971) Alkali feldspars of the Wiborg rapakivi massif in southeastern Finland. Bull Comm Geol Finland 246:1–72

    Google Scholar 

  • Vorma A (1972) On the contact aureole of the Wiborg rapakivi granite massif in southeastern Finland. Geol Surv Finland Bull 255:28 pp

  • Vorma A (1976) On the geochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Geol Surv Finland Bull 285:1–98

    Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib Mineral Petrol 104:507–515

    Google Scholar 

  • Yoder HS Jr, Stewart DB, Smith JR (1957) Ternary feldspars. Carnegie Inst, Washington Yearbk 56:206–214

    Google Scholar 

  • Yund RA (1984) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. In: Brown WL (ed) Feldspars and feldspathoids, structures, properties and occurrences. NATO ASI series. Reidel, Dordrecht, pp 281–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dempster, T.J., Hutton, D.H.W., Harrison, T.N. et al. Textural evolution of the rapakivi granites, south Greenland —Sr, O and H isotopic investigations. Contr. Mineral. and Petrol. 107, 459–471 (1991). https://doi.org/10.1007/BF00310680

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310680

Keywords

Navigation