Skip to main content
Log in

The translational energy distributions for metal atoms and ions produced via visible laser MPD/MPI of group 13 metal alkyls and MPI of aluminum and indium atomic beams

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The nascent translational energy distributions of group 13 metal ions produced via multiphoton dissociation and multiphoton ionization (MPD/MPI) of their trimethyl derivatives and via multiphoton ionization of metal atomic beams have been measured using time-of-flight mass-spectroscopy. In all cases the ion production was isotropic and the translational energy distribution was approximately Boltzmann. For ionization of free aluminum and indium atoms translational temperatures of 6K and 4K were measured, corresponding to most probable velocities of 60 and 24 ms−1. From multiphoton dissociation of trimethylaluminum, trimethylgallium, and trimethylindium, translational temperatures of 1800, 700, and 900 K resulted. These correspond to velocities of ∼1000, 400, and 350 ms−1. A photodissociation mechanism involving elimination of ethane followed by dissociation of monomethyl metal intermediates to produce metal atoms is in reasonable agreement with the experimental data. The nascent velocities of metal atoms and ions from the metal alkyl and metal beam sources are used to assess the potential of these sources for microfabrication of metal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Ehrlich, R.M. Osgood, T.F. Deutsch: IEEE J. QE-16, 1233 (1980)

    Google Scholar 

  2. Laser Diagnostics and Photochemical Processing for Semiconductor Devices, ed. by R.M. Osgood, S.R.J. Brueck, H.R. Schlossberg, Mater. Res. Soc. Symp. Proc.17 (1983)

  3. D.J. Ehrlich, J.Y. Tsao: J. Vac. Sci. Technol. B1, 969 (1983)

    Google Scholar 

  4. Laser Processing and Diagnostics, ed. by D. Bäuerle (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  5. Q. Mingxin, R. Monot, H. van den Bergh: Scientia Sinica27, 531 (1984)

    Google Scholar 

  6. R.M. Osgood, H.H. Gilgen: Ann. Rev. Mater. Sci.15, 549 (1985)

    Google Scholar 

  7. D. Bäuerle:Chemical Processing with Lasers, Springer Ser. Mater. Sci., Vol. 4 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  8. F.A. Houle: Appl. Phys. A41, 315 (1986)

    Google Scholar 

  9. H.H. Gilgen, T. Cacouris, P.S. Shaw, R.R. Krchnavek, R.M. Osgood: Appl. Phys. B42, 55 (1987)

    Google Scholar 

  10. J. Amano: Thin Solid Films92, 115 (1982)

    Google Scholar 

  11. Low Energy Ion Beams. Inst. Phys. Conf. Ser.54 (1980)

  12. T. Takagi: Mater. Res. Soc. Symp. Proc.27, 501 (1984)

    Google Scholar 

  13. I. Yamada, T. Takagi, P.R. Younger, P.R. Blake: Opt. Eng.26, 174 (1987)

    Google Scholar 

  14. I. Yamada, H. Takaoka, H. Usui, T. Takagi: J. Vac. Sci. Technol. A4, 722 (1986)

    Google Scholar 

  15. V.S. Letokhov: Sov. J. Quant. Elect.13, 1308 (1983)

    Google Scholar 

  16. M.L. Muchnik: Sov. Tech. Phys. Lett.9, 553 (1983)

    Google Scholar 

  17. A.N. Zhenkhin, V.S. Letokhov, V.I. Mishin, M.E. Muchnik, V.N. Fedoseyev: Appl. Phys. B30, 47 (1983)

    Google Scholar 

  18. M.L. Muchnik, Yu.V. Orlov, G.D. Parshin, E.Ya. Chernyak, V.S. Letokhov, V.I. Mishin: Sov. J. Quant. Elect.13, 1515 (1983)

    Google Scholar 

  19. D.B. Geohegan, J.G. Eden: Appl. Phys. Lett.45, 1146 (1984)

    Google Scholar 

  20. D.B. Geohegan, A.W. McCown, J.G. Eden: J. Chem. Phys.81, 5336 (1984)

    Google Scholar 

  21. A.R. Calloway, T.A. Galantowicz, W.R. Fenner: J. Vac. Sci. Technol. A1, 534 (1983)

    Google Scholar 

  22. J.G. Eden. IEEE Circuits Devices2, 18 (1986)

    Google Scholar 

  23. I. Dimicoli, M. Mons, F. Piuzzi: SPIE669, 40 (1986)

    Google Scholar 

  24. M. Mons, I. Dimicoli: Chem. Phys. Lett.131, 298 (1986)

    Google Scholar 

  25. M.R. Humphries, O.L. Bourne, P.A. Hackett: Chem. Phys. Lett.118, 134 (1985)

    Google Scholar 

  26. S.A. Mitchell, P.A. Hackett: J. Chem. Phys.79, 4815 (1983)

    Google Scholar 

  27. S.A. Mitchell, P.A. Hackett, D.M. Rayner, M.R. Humphries: J. Chem. Phys.83, 5028 (1985)

    Google Scholar 

  28. J.D. Campbell, M.H. Yu, M. Mangir, C. Wittig: J. Chem. Phys.69, 3854 (1978)

    Google Scholar 

  29. J.D. Cox, G. Pilcher:Thermochemistry of Organic and Organometallic Compounds (Academic, London 1970)

    Google Scholar 

  30. J. Haigh: J. Mater. Sci.18, 1072 (1983)

    Google Scholar 

  31. H.H. Gilgen, C.J. Chen, R. Krchnavek, R.M. Osgood: In Ref. [4] p. 225

    Google Scholar 

  32. J.J. Low, W.A. Goddard: J. Am. Chem. Soc.106, 8321 (1984)

    Google Scholar 

  33. J.J. Low, W.A. Goddard: Organometallics5, 609 (1986)

    Google Scholar 

  34. S.L. Baughcum, S.R. Leone: Chem. Phys. Lett.89, 183 (1982)

    Google Scholar 

  35. C.F. Yu, F. Youngs, K. Tsukiyama, R. Bersohn, J. Preses: J. Chem. Phys.85, 1382 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callender, C.L., Rayner, D.M. & Hackett, P.A. The translational energy distributions for metal atoms and ions produced via visible laser MPD/MPI of group 13 metal alkyls and MPI of aluminum and indium atomic beams. Appl. Phys. B 47, 7–15 (1988). https://doi.org/10.1007/BF00696202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696202

PACS

Navigation