Skip to main content
Log in

Mode locking in quantum optics

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Mode locking phenomena in acoustics and in laser physics are discussed and are shown to share a feature of the forced oscillator: Oscillation takes place at the forcing frequency (or frequencies). The phenomena differ from simple forced oscillations in that they involve sustained oscillators (e.g., clocks, lasers) whose sustaining sources compete against the forcing signals in the choice of oscillation frequency. The locking phenomena are compared to second-order phase transitions in ferromagnetism and superconductivity where corresponding competition occurs between disordering thermal fluctuations and ordering correlations which reduce system energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Société Hollandaise des Sciences,Oeuvres complètes de Christian Huygens (Martinus Nijhoff, La Haye 1893), Vol. 5, pp. 243–244

    Google Scholar 

  2. Ref. [1],, pp. 255–256

    Google Scholar 

  3. Rayleigh (Lord): Phil. Mag.13, 316 (1907)

    Google Scholar 

  4. B.van derPol: Radiol. Rev.1, 704 (1920)

    Google Scholar 

  5. B.van derPol: Phil. Mag.3, 65 (1927) (See also his review article, Proc. IRE22, 1051 (1934))

    Google Scholar 

  6. W.E.Lamb,Jr.: Phys. Rev.134, 1429 (1964)

    Article  ADS  Google Scholar 

  7. N.Minorsky:Nonlinear oscillations (Van Nostrand, Princeton, N. J. 1962), Chap. 18

    MATH  Google Scholar 

  8. R. Lang, M.O.Scully, W.E.Lamb,Jr.: Phys. Rev. (to be published)

  9. W.R.Bennett,Jr.: Phys. Rev.126, 580 (1962)

    Article  ADS  Google Scholar 

  10. F.Aronowitz, R.J.Collins: Appl. Phys. Letters9, 55 (1966)

    Article  Google Scholar 

  11. M.Sargent III, M.O.Scully: Theory of Laser Operation, in:Laser Handbook, Eds. F.T.Arecchi and E.O.Schultz-DuBois (North-Holland, Amsterdam 1972) pp. 45–114

    Google Scholar 

  12. M.SargentIII, W.E.Lamb,Jr., R.L.Fork: Phys. Rev.164, 450 (1967)

    Article  ADS  Google Scholar 

  13. L.E.Hargrove, R.L.Fork, M.A.Pollack: Appl. Phys. Letters5, 4 (1964)

    Article  Google Scholar 

  14. H.W.Mocker, R.J.Collins: Appl. Phys. Letters7, 270 (1965)

    Article  Google Scholar 

  15. A.J.DeMaria, D.A.Stetser, H.Heynau: Appl. Phys. Letters8, 174 (1966)

    Article  Google Scholar 

  16. C.C.Cutler: Proc. IRE43, 140 (1955)

    Google Scholar 

  17. V.S.Letokhov: Soviet Phys. JETP28, 562 (1969) (In this paper, the “minipulse” of peak power is said to build up rather than the group of minipulses that concentrates the greatest energy in the short absorber relaxation time. According to F. A. Hopf, it is the latter that effects the absorber)

    ADS  Google Scholar 

  18. S.E.Harris, O.P.McDuff: IEEE J. Quantum ElectronicsQE-1, 245 (1965) FM operation was observed by E. O. Ammann, B.J. McMurtry, M.K.Oshman: IEEE J. Quantum ElectronicsQE-1, 263 (1965)

    Article  Google Scholar 

  19. A.G.Fox, T.Li: Bell System Tech. J.40, 453 (1961); Proc. I.R.E.48, 1904 (1961)

    Google Scholar 

  20. G.D.Boyd, J.P.Gordon: Bell System Tech. J.40, 489 (1961)

    Google Scholar 

  21. R.J.Glauber: Phys. Rev.131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  22. D.H.Auston: IEEE J. Quantum ElectronicsQE-4, 420 and 471 (1968)

    Article  Google Scholar 

  23. P.W.Smith: Proc. IEEE58, 1342 (1970) Among the papers published since this review article, notably those dealing with Nd:YAG, are a series by D.J.Kuizenga, A.E.Siegman: IEEE J. Quantum ElectronicsQE-6, 673, 694, 709, and 803 (1970); and one reporting the continuous, 1-psec pulse trains in a dye laser with a saturable absorber by C.V. Shank, E.P.Ippen, and A.Dienes, paper B.3, International Quantum Electronics Conference, Montreal 1972

    Google Scholar 

  24. V.DeGiorgio, M.O.Scully: Phys. Rev.A2, 1170 (1970)

    Article  ADS  Google Scholar 

  25. R.Graham, H.Haken: Z. Physik237, 31 (1970)

    Article  MathSciNet  Google Scholar 

  26. M.O.Scully, personal communication to the author

  27. See, for example, S.Chandrasekhar,Hydrodynamik and hydromagnetic stability (Clarendon Press, Oxford 1961) pp. 652

    Google Scholar 

  28. R.Graham, in Proceedings of the Third (1972) Rochester Conference on Coherence and Quantum Optics; another paper to be published

  29. M.O.Scully, in Proceedings of the Third (1972) Rochester Conference on Coherence and Quantum Optics

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, M. Mode locking in quantum optics. Appl. Phys. 1, 133–139 (1973). https://doi.org/10.1007/BF00889543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00889543

Index Headings

Navigation