Skip to main content
Log in

A model of microtubule oscillations

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Simulations of microtubule oscillations have been obtained by a kinetic model including nucleation of microtubules, elongation by addition of GTP-loaded tubulin dimers, disassembly into oligomers, and dissolution of oligomers followed by nucleotide exchange at the free dimers. Dynamic instability is described by the on and off rates for dimer association in the growth phase, the rate of rapid shortening, and the transition rates for catastrophe and rescue. The latter are assumed to be completely determined by the current state of the system (“short cap hypothesis”). Microtubule oscillations and normal polymerizations measured by time-resolved X-ray scattering were used to test the model. The model is able to produce oscillations without further assumptions. However, in order to obtain good fits to the experimental data one requires an additional mechanism which prevents rapid desynchronization of the microtubules. One of several possible mechanisms that will be discussed is the destabilization of microtubules by the products of disassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MT(s):

microtubule(s)

G-MT/S-MT:

microtubule in the state of growth/shortening

GTP:

guanosine 5′-triphosphate

GDP:

guanosine 5′-diphosphate

TU · GDP/TU · GTP:

tubulin dimer with GDP/GTP bound to the exchangeable nucleotide binding site

MAP(s):

microtubule-associated protein(s)

PC:

tubulin phosphocellulose-purified tubulin

PIPES:

piperazine-1,4-bis(2-ethane sulfonic acid)

DDT:

dithiothreitol

EGTA:

ethylene glycol-O,O′-bis(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid

References

  • Bayley PM, Manser EJ (1985) Assembly of microtubules from nucleotide-depleted tubulin. Nature 318:683–685

    Google Scholar 

  • Bayley PM, Martin SR (1986) Inhibition of microtubule elongation by GDP. Biochem Biophys Res Commun 137:351–358

    Google Scholar 

  • Bayley PM, Schilstra MJ, Martin SR (1989) A simple formulation of microtubule dynamics: quantitative implications of the dynamic instability of microtubule populations in vivo and in vitro. J Cell Sci 93:241–254

    Google Scholar 

  • Bayley P, Schilstra M, Martin S (1989a) A lateral cap model of microtubule dynamic instability. FEBS Lett 259:181–184

    Google Scholar 

  • Bayley PM, Schilstra MJ, Martin SR (1990) Microtubule dynamic instability: numerical simulation of microtubule transition properties using a lateral cap model. J Cell Sci 95:33–48

    Google Scholar 

  • Boulin C, Kempf R, Koch M, McLaughlin S (1986) Data appraisal, evaluation and display for synchrotron radiation experiments: hardware and software. Nucl Instrum Methods A 249:399–407

    Google Scholar 

  • Caplow M (1992) Microtubule dynamics. Curr Opinion Cell Biol 4:58–65

    Google Scholar 

  • Carlier M-F, Pantaloni D (1981) Kinetic analysis of guanosine 5′triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20:1918–1924

    Google Scholar 

  • Carlier M-F, Melki R, Pantaloni D, Hill TL, Chen Y (1987) Synchronous oscillations in microtubule polymerization. Proc Natl Acad Sci, USA 84:5257–5261

    Google Scholar 

  • Carlier MF, Didry D, Melki R, Chabre M, Pantaloni D (1988) Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium. Biochemistry 27:3555–3559

    Google Scholar 

  • Cassimeris L, Pryer NK, Salmon ED (1988) Real-time observation of microtubule dynamic instability in living cells. J Cell Biol 107:2223–2231

    Google Scholar 

  • Chen Y, Hill TK (1985) Monte Carlo study of the GTP cap in a five-start helix model of a microtubule. Proc Natl Acad Sci, USA 82:1131–1135

    Google Scholar 

  • Chen Y, Hill TL (1987) Theoretical studies on oscillations in microtubule polymerization. Proc Natl Acad Sci, USA 84:8419–8423

    Google Scholar 

  • Chretien D, Metoz F, Verde F, Karsenti E, Wade RH (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol 117:1031–1040

    Google Scholar 

  • Cone M, Lombillo VA, McIntosh JR (1991) Microtubule depolymerization promotes particle and chromosome movement in vitro. J Cell Biol 112:1165–1175

    Google Scholar 

  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

    Google Scholar 

  • Engelborghs Y, Eccleston J (1982) Fluorescence stopped-flow study of the binding of S6-GTP to tubulin. FEBS Lett 141:78–81

    Google Scholar 

  • Erickson HP, O'Brien ET (1992) Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct 21:145–166

    Google Scholar 

  • Gaskin F, Cantor CR, Shelanski MI (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89:737–758

    Google Scholar 

  • Gildersleeve RF, Cross AR, Cullen KE, Fagen AP, Williams RC (1992) Microtubules grow and shorten at intrinsically variable rates. J Biol Chem 267:7995–8006

    Google Scholar 

  • Hamel E, Batra J, Lin C (1986) Direct incorporation of guanosine 5′-diphosphate into microtubules without guanosine 5′-triphosphate hydrolysis. Biochemistry 25:7054–7062

    Google Scholar 

  • Hill TL, Chen Y (1984) Phase changes at the end of a microtubule with a GTP cap. Proc Natl Acad Sci, USA 81:5772–5776

    Google Scholar 

  • Hitt AL, Cross AR, Williams RC (1990) Microtubule solutions display nematic liquid-crystalline structure. J Biol Chem 265:1639–1647

    Google Scholar 

  • Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Google Scholar 

  • Howard WD, Timasheff SN (1986) GDP state of tubulin: stabilization of double rings. Biochemistry 25:8292–8300

    Google Scholar 

  • Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolysable analogue, GMPCPP. Mol Biol Cell 3:1155–1167

    Google Scholar 

  • Koch MHJ, Bordas J (1983) X-ray diffraction and scattering on disordered systems using synchrotron radiation. Nucl Instrum Methods 208:461–469

    Google Scholar 

  • Koshland DE, Mitchison TJ, Kirschner MW (1988) Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499–504

    Google Scholar 

  • Kristofferson D, Karr TL, Purich DL (1980) Dynamics of linear protein polymer disassembly. J Biol Chem 255:8567–8572

    Google Scholar 

  • Lange G, Mandelkow E-M, Jagla A, Mandelkow E (1988) Tubulin oligomers and microtubule oscillations — antagonistic role of microtubule stabilizers and destabilizers. Eur J Biochem 178:61–69

    Google Scholar 

  • Lin CM, Hamel E (1987) Interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. Biochemistry 26:7173–7182

    Google Scholar 

  • Mandelkow E, Mandelkow EM, Bordas J (1983) Synchrotron radiation as a tool for studying microtubule self-assembly. TIBS 8:374–377

    Google Scholar 

  • Mandelkow E-M, Mandelkow E (1992) Microtubule oscillations. Cell Motility Cytoskeleton 22:235–244

    Google Scholar 

  • Mandelkow E-M, Harmsen A, Mandelkow E, Bordas J (1980) X-ray kinetic studies of microtubule assembly using synchrotron radiation. Nature 287:595–599

    Google Scholar 

  • Mandelkow E-M, Herrmann M, Rühl U (1985) Tubulin domains probed by subunit-specific antibodies and limited proteolysis. J Mol Biol 185:311–327

    Google Scholar 

  • Mandelkow E-M, Lange G, Jagla A, Spann U, Mandelkow E (1988) Dynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions. EMBO J 7:357–365

    Google Scholar 

  • Mandelkow E-M, Mandelkow E,Milligan RA (1991) Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol 114:977–991

    Google Scholar 

  • Martin SR, Bayley PM (1987) Effects of GDP on microtubules at steady state. Biophys Chem 27:67–76

    Google Scholar 

  • Martin SR, Schilstra MJ, Bayley PM (1991) Opposite-end behaviour of dynamic microtubules. Biochim Biophys Acta 1073:555–561

    Google Scholar 

  • Martin SR, Schilstra MJ, Bayley PM (1993) Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Biophys J 65:578–596

    Google Scholar 

  • Marx A, Jagla A, Mandelkow E (1990) Microtubule assembly and oscillations induced by flash photolysis of caged-GTP. Fur Biophys J 19:1–9

    Google Scholar 

  • Melki R, Carlier M-F, Pantaloni D (1988) Oscillations in microtubule polymerization: the rate of GTP regeneration on tubulin controls the period. EMBO J 7:2653–2659

    Google Scholar 

  • Melki R, Carlier M-F, Pantaloni D, Timasheff SN (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28:9143–9152

    Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Google Scholar 

  • Obermann H, Mandelkow E-M, Lange G, Mandelkow E (1990) Microtubule oscillations: role of nucleation and microtubule number concentration. J Biol Chem 265:4382–4388

    Google Scholar 

  • Obermann-Pleß H (1992) Zusammenhänge zwischen Nukleation, dynamischer Instabilität and Oszillationen von Mikrotubuli. Doctoral thesis, Hamburg

  • O'Brien ET, Voter WA, and Erickson HP (1987) GTP hydrolysis during microtubule assembly. Biochemistry 26:4148–4156

    Google Scholar 

  • O'Brien ET, Salmon ED, Walker RA, Erickson HP (1990) Effects of magnesium on the dynamic instability of individual microtubules. Biochemistry 29:6648–6656

    Google Scholar 

  • Pirollet F, Job D, Margolis RL, Garel J-R (1987) An oscillatory mode for microtubule assembly. EMBO J 6:3247–3252

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Pryer NK, Walker RA, Skeen VP, Bourns BD, Soboeiro MF, Salmon ED (1992) Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. J Cell Sci 103:965–976

    Google Scholar 

  • Renner W, Mandelkow E-M, Mandelkow E, Bordas J (1983) Self-assembly of microtubule protein studied by time-resolved X-ray scattering using temperature jump and stopped flow. Nucl Instrum Methods 208:535–540

    Google Scholar 

  • Rothwell SW, Grasser WA, Baker HN, Murphy DB (1987) The relative contributions of polymer annealing and subunit exchange to microtubule dynamics in vitro. J Cell Biol 105:863–874

    Google Scholar 

  • Sammak PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332:724–726

    Google Scholar 

  • Schilstra MJ, Martin SR, Bayley PM (1987) On the relationship between nucleotide hydrolysis and microtubule assembly: Studies with a GTP-regenerating system. Biochem Biophys Res Commun 147:588–595

    Google Scholar 

  • Schulze E, Kirschner M (1988) New features of microtubule behavior observed in vivo. Nature 334:356–359

    Google Scholar 

  • Smith P, Krohn I, Hermanson G, Malla A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    CAS  PubMed  Google Scholar 

  • Somers M, Engelborghs Y (1990) Kinetics of the spontaneous organization of microtubules in solution. Fur Biophys J 18:239–244

    Google Scholar 

  • Spann U, Renner W, Mandelkow E-M, Bordas J, Mandelkow E (1987) Tubulin oligomers and microtubule assembly studied by time-resolved X-ray scattering: separation of prenucleation and nucleation events. Biochemistry 26:1123–1132

    Google Scholar 

  • Stewart RJ, Farell KW, Wilson L (1990) Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism. Biochemistry 29:6489–6498

    Google Scholar 

  • Tabony J, Job D (1990) Spatial structures in microtubular solutions requiring a sustained energy source. Nature 346:448–451

    Google Scholar 

  • Tabony J, Job D (1992) Gravitational symmetry-breaking in microtubular dissipative structures. Proc Natl Acad Sci, USA 89:6948–6952

    Google Scholar 

  • Trinczek B, Marx A, Mandelkow E-M, Murphy DB, Mandelkow E (1993) Dynamics of microtubules from erythrocyte marginal bands. Mol Biol Cell 4:323–335

    Google Scholar 

  • Voter WA, Erickson HP (1984) The kinetics of microtubule assembly: evidence for a two-stage nucleation mechanism. J Biol Chem 259:10430–10438

    Google Scholar 

  • Voter WA, O'Brien ET, Erickson HP (1991) Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap. Cell Motility & Cytoskeleton 18:55–62

    Google Scholar 

  • Wade RH, Pirollet F, Margolis RL, Garel J-R, Job D (1989) Monotonic versus oscillating microtubule assembly: a cryo-electron microscope study. Biol Cell 65:37–44

    Google Scholar 

  • Walker RA, O'Brien ET, Pryer NK, Soboeiro M, Voter WA, Erickson HP, Salmon ED (1988) Dynamic instability of individual microtubules analysed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Google Scholar 

  • Walker RA, Pryer NK, Salmon ED (1991) Dilution of individual microtubules observed in real-time in vitro: evidence that cap size is small and independent of elongation rate. J Cell Biol 114:73–81

    Google Scholar 

  • Zeeberg B, Cheek J, Caplow M (1980) Exchange of tubulin dimer into rings in microtubule assembly-disassembly. Biochemistry 19:5078–5086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, A., Mandelkow, E. A model of microtubule oscillations. Eur Biophys J 22, 405–421 (1994). https://doi.org/10.1007/BF00180162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180162

Key words

Navigation