Skip to main content
Log in

Experimental exsolution textures in the system bornite-chalcopyrite: Genetic implications concerning natural ores

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Textural interpretation of ore-mineral assemblages, such as bornite-chalcopyrite (bn-cpy) intergrowths, should be based on definite experimentation. Appropriate exsolution and coarsening experiments were performed using sealed, evacuated, silicaglass tubes; synthetic bn-cpy solid solutions were annealed between 100° and 350°C for times of 20 min to 10 weeks. Early-formed textures develop through nucleation and growth and depend on the initial degree of supersaturation and the metal diffusivities. Final textures, due to additional growth and coarsening, are very sensitive to temperature and may serve as geothermometers. Mutual boundary textures which form above 250°C can originate by: (1) simultaneous precipitation; (2) exsolution during slow cooling from above the solvus; and (3) metamorphism to temperatures above about 250°C. Widmanstätten textures are not compatible with slow cooling, but indicate: (1) low-temperature replacement of bn; or (2) exsolution of cpy lamellae from anomalous bn heated to around 200°–250°C during mild metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton PB Jr (1970) Sulfide Petrology. MSA Spec Paper 3: 187–198

  • Barton PB Jr, Skinner BJ (1967) Sulfide Mineral Stabilities. In: Geochemistry of Hydrothermal Ore Deposits, Barnes H. L. (ed) Holt, Rinehart, Winston, New York pp 236–333

    Google Scholar 

  • Barton PB Jr, Toulmin P III (1961) Some Mechanisms for Cooling Hydrothermal Fluids. USGS Prof Paper 424-D, 348–352

  • Birchenall CE (1973) Diffusion in Sulfides. In: Geochemical Transport and Kinetics, Giletti AW et al (ed) Carnegie Inst. Washington Publ. 634: 53–59

    Google Scholar 

  • Brett PR (1962) Exsolution Textures and Rates in Solid Solutions Involving Bornite. Carnegie Inst Washington Yearb 61: 155–157

    Google Scholar 

  • Brett PR (1963) The Cu-Fe-S System. Carnegie Inst Washington Yearb 62: 193–196

    Google Scholar 

  • Brett PR (1964) Experimental Data from the System Cu-Fe-S and their Bearing on Exsolution Textures in Ores. Econ Geol 59: 1241–1269

    Google Scholar 

  • Brett PR, Yund RA (1964) Sulfur-Rich Bornites. Am Min 49: 1084–1099

    Google Scholar 

  • Cabri JL (1973) New Data on Phase Relations in the Cu-Fe-S System. Econ Geol 68: 443–454

    Google Scholar 

  • Chen JH, Harvey VW (1975) Cation Self-Diffusion in Chalcopyrite and Pyrite. Metall Trans B 6: 331–339

    Google Scholar 

  • Condit RH, Hobbins RR, Birchenall CE (1974) Self-Diffusion of Iron and Sulfur in Ferrous Sulfide. Oxid Met 8: 409–455

    Google Scholar 

  • Durazzo A, Taylor LA (1978) Kinetic Factors in Bornite-Chalcopyrite Textural Developments. EOS Trans Am Geoph Union 59: 396

    Google Scholar 

  • Dutrizac JE, MacDonald RJC, Ingraham TR (1970) The Kinetics of Dissolution of Bornite in Acidified Ferric Sulfate Solutions. Met Trans 1: 225–231

    Google Scholar 

  • Edwards AB Textures of the Ore Minerals and their Significance. Melbourne: Australasian Inst of Mining and Met 1954

  • Frenzel G (1959) Idait und “blaubleibender Covellin”. Neues Jb Miner Abh 93: 87–132

    Google Scholar 

  • von Gehlen K (1963) Anomaler Bornit und seine Umbildung zu Idait und “Chalkopyrit” in deszendenten Kupfererzen von Sommerkahl (Spessart). Fortschr Mineral 41: 163

    Google Scholar 

  • Gruner JR (1929) Structural Reasons for Oriented Intergrowths in Some Minerals. Am Min 14: 227–237

    Google Scholar 

  • Hawley JE (1962) The Sudbury Ores: Their Mineralogy and Origin. Can Min 7: 1–107

    Google Scholar 

  • Hawley JE, Haw VA (1957) Intergrowths of Pentlandite and Pyrrhotite. Econ Geol 52: 132–139

    Google Scholar 

  • Kullerud G (1971) Experimental Techniques in Dry Sulfide Research. In: Research Techniques for High Pressure and High Temperature. Ulmer GC (ed). Springer, Berlin 288–315

    Google Scholar 

  • Kurtz AD, Averbach BL, Cohen M (1955) Self-Diffusion of Gold in Gold-Nickel Alloys. Acta Metall 3: 442–446

    Google Scholar 

  • Lyon RJP (1959) Time Aspects of Geothermometry. Mining Eng 11: 1145–1151

    Google Scholar 

  • MacLean WH, Cabri LJ, Gill JE (1972) Exsolution Products in Heated Chalcopyrite. Can J Earth Sci 9: 1305–1317

    Google Scholar 

  • Martin JW, Doherty RD (1976) Stability of Microstructure in Metallic Systems. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Morimoto N, Greig JW, Tunnel J (1960) Re-Examination of a Bornite from the Carn Brea Mine, Cornwall. Carnegie Inst Washington Yearb 59: 122–126

    CAS  PubMed  Google Scholar 

  • Newhouse WH (1928) The Microscopic Criteria of Replacement in the Opaque Ore Minerals. In: The Laboratory Investigation of Ores, Fairbanks EE (ed) McGraw-Hill, New York 147–161

    Google Scholar 

  • Prouvost J (1960) Remarques sur la Composition et le Pouvoir Reflecteur de la Bornite (Cu5FeS4). Congr Nat Soc Savantes, Sect Sci, Dijon 1959 365–372

  • Ramdohr P (1969) The Ore Minerals and their Intergrowths. Pergamon Press, Oxford

    Google Scholar 

  • Ray JR (1930) Sulfide Replacement of Ore Minerals. Econ Geol 25: 433–451

    Google Scholar 

  • Roberts WMB (1963) The Low Temperature Synthesis in Aqueous Solution of Chalcopyrite and Bornite. Econ Geol 58: 52–61

    Google Scholar 

  • Samal GI, Gilevich MP (1978) Self-Diffusion of Copper in Bornite and Chalcopyrite. Vestsi Akad Navuk BSSR, Ser Khim Navuk 1: 126–129

    Google Scholar 

  • Schouten C (1934) Structures and Textures of Synthetic Replacements in “Open Space”. Econ Geol 29: 611–658

    Google Scholar 

  • Schwartz GM (1931a) Integrowths of Bornite and Chalcopyrite. Econ Geol 26: 611–658

    Google Scholar 

  • Schwartz GM (1931b) Textures due to Unmixing of Solid Solutions. Econ Geol 26: 739–763

    Google Scholar 

  • Shewmon PG (1969) Transformations in Metals. Mc Graw-Hill, New York

    Google Scholar 

  • Sillitoe RM, Clark AM (1969) Copper and Copper-Iron Sulfides as the Initial Products of Supergene Oxidation, Copiapo Mining District, Northern Chile. Am Min 54: 1684–1710

    Google Scholar 

  • Sindeeva ND (1964) Mineralogy and Types of Deposits of Selenium and Tellurium, Interscience, New York

    Google Scholar 

  • Sugaki A (1951a) Thermal Experiments on the Lattice Intergrowth of Chalcopyrite and Klaprothite in Bornite from the Obari Mine, Jpn Sci Rep Tohoku Univ, Ser III 4: 11–17

    Google Scholar 

  • Sugaki A (1951b) Thermal Studies on the Lattice Intergrowths of Chalcopyrite in Bornite from the Akayama Mine, Jpn Sci Rep Tohoku Univ, Ser III 4: 19–28

    Google Scholar 

  • Sugaki A (1955) Thermal Studies on the Lattice Intergrowths of Chalcopyrite in Bornite from the Jinmu Mine, Jpn Sci Rep Tohoku Univ, Ser III 5: 113–128

    Google Scholar 

  • Sugaki A (1965) Studies on the Join Cu5FeS4-CuFeS2-x as Geothermometer. J Jpn Assoc Min Petr Econ Geol 53: 1–17

    Google Scholar 

  • Taylor LA (1971) The Fe-S-O System: Oxidation of Pyrrhotite. Carnegie Inst Washington Yearb 70: 287–290

    Google Scholar 

  • Tufar W (1967) Der Bornit von Trattenbach (Niederösterreich). Neues Jahrb Mineral Abh 106: 334–351

    Google Scholar 

  • Van der Veen RW (1925) Mineragraphy of Ore Deposition. Naeff G, The Hague

    Google Scholar 

  • Verhoeven JD (1975) Fundamentals of Physical Metallurgy. John Wiley & Sons, New York

    Google Scholar 

  • Wandke A (1926) Molecular Migration and Mineral Transformation. Econ Geol 28: 166–171

    Google Scholar 

  • Yund RA, Hall HT (1970) Kinetics and Mechanism of Pyrite Exsolution from Pyrrhotite. J Petr 11: 381–404

    Google Scholar 

  • Yund RA, Kullerud G (1966) Thermal Stability of Assemblages in the Cu-Fe-S System. J Petr 7: 454–488

    Google Scholar 

  • Yund RA, McCallister RH (1970) Kinetics and Mechanisms of Exsolution. Chem Geol 6: 5–30

    Google Scholar 

  • Ziebold TO, Ogilvie RE (1963) Quantitative Analysis with the Electron Microanalyzer. Analyt Chem 35: 621–627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durazzo, A., Taylor, L.A. Experimental exsolution textures in the system bornite-chalcopyrite: Genetic implications concerning natural ores. Mineral. Deposita 17, 79–97 (1982). https://doi.org/10.1007/BF00206377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206377

Keywords

Navigation