Skip to main content
Log in

Identification of amino acids involved in the binding of hMIP-1α to CC-CKR1, a MIP-lα receptor found on neutrophils

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human macrophage inflammatory protein-1α (hMIP-1α) and human macrophage inflammatory protein-1β (hMIP-1β) are chemokines involved in a diverse range of immunological effects. Both hMIP-1α and hMIP-1β are involved in the activation of monocytes and THP-1 cells probably through a common receptor(s). However, only hMIP-1α can bind to neutrophils with high affinity, presumably through CC-CKR1 (CKR1). Since the structure of these two proteins is highly conserved, non-conserved amino acids must define the disparate binding patterns that these two proteins exhibit. Measurements of binding, chemotaxis and calcium influx conducted with hMIP-1α and hMIP-1β chimeric proteins and mutants show that two amino acids (37K and 43L) are important in the binding and signaling of hMIP-1α through CKR1. Furthermore, we also show that mutations of the three charged amino acids at the C-terminus of hMIP-1α and hMIP-1β (amino acids 61, 65 and 67), do not adversely affect the binding to THP-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheim JJ, Zachariae OC, Mukaida N, Matsushima K: Properties of the proinflammatory supergene ‘intercine’ cytokine family. Ann Rev Immunol 9: 617–648, 1991

    Google Scholar 

  2. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381: 667–673, 1996

    PubMed  Google Scholar 

  3. Baggiolini M, Dewald B, Moser B: Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 55: 97–179, 1994

    PubMed  Google Scholar 

  4. Dahinden CA, Geiser T, Brunner T, von Tschamer V, Caput D, Ferrara P, Minty A, Baggiolini M: Monocyte chemotactic protein 3 is a most effective basophil and eosinophil-activating chemokine. J Exp Med 179: 751–756, 1994

    PubMed  Google Scholar 

  5. Bischoff SC, Krieger M, Brunner T, Rot A, von Tscharner V, Baggiolini M, Dahinden CA: RANTES and related chemokines activate human basophil granulocytes through different C protein-couple receptors. Eur J Immunol 23: 761–767, 1993

    PubMed  Google Scholar 

  6. Neote K, DiCregorio D, Mak JY, Horuk R, Schall TJ: Molecular cloning functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72: 415–425, 1993

    PubMed  Google Scholar 

  7. Gao J-L, Kuhns DB, Tiffany HL, McDermott D, Li X, Francke U, Murphy PM: Structure and functional expression of the human macrophage inflammatory protein 1α/RANTES receptor. J Exp Med 177: 1421–1427, 1993

    PubMed  Google Scholar 

  8. Avalos BR, Bartynski KJ, Elder PJ, Kotur MS, Burton WG, Wilkie NM: The active monomeric form of macrophage inflammatory protein-1 alpha interacts with high-and low-affinity classes of receptors on human hematopoietic cells. Blood 84: 1790–1797, 1994

    PubMed  Google Scholar 

  9. Power CA, Meyer A, Nemeth K, Bacon KB, Hoogewerf AJ, Proudfoot AE, Wells TN: Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J Biol Chem 270: 19495–19500, 1996

    Google Scholar 

  10. Combadiere C, Ahuja SK, Murphy PM: Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem 270: 16491–16494, 1995

    PubMed  Google Scholar 

  11. McColl SR, Hachicha M, Levasseur S, Neote K, Schall TJ: Uncoupling of early signal transduction events from effector function in human peripheral blood neutrophils in response to recombinant macrophage inflammatory proteins-1 alpha and-1 beta. J Immunol 150: 4550–4560, 1993

    PubMed  Google Scholar 

  12. Clore GM, Appella E, Yamada M, Matsushim a K, Gronenborn, AM: Determination of the seedndary structure of interleukin-8 nuclear magnetic resonance spectroscopy. J Biol Chem 264: 18907–18911, 1989

    PubMed  Google Scholar 

  13. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM, Wlodawer A: Crystal structure of interleukin 8: Symbiosis of NMR and crtystallography. Proc Natl Acad Sci 88: 502–506, 1991

    PubMed  Google Scholar 

  14. Glore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM: Three dimensional structure of interleukin 8 in solution. Biochemistry 29: 1689–1696, 1990

    PubMed  Google Scholar 

  15. St Charles RS, Walz DA, Edwards BFP: The three-dimensional structure of bovine platelet factor 4 at 3.0-A resolution. J Biol Chem 264: 2092–2099, 1989

    PubMed  Google Scholar 

  16. Kawasaki ES: Amplification of RNA. In: M. Innis et al. (eds). FCR: Protocols, a Guide to Methods and Applications. Academic Press, San Diego, 1991, pp 21–27

    Google Scholar 

  17. Wong GG, Witek JS, Temple PA, Wilkens KM, Leary AC, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, Shoemaker C, Golde DW, Kaufman RJ, Hewick RM, Wang EA, Clark SC: Human GM-CSF: Cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228: 810–815, 1985

    PubMed  Google Scholar 

  18. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523, 1979

    PubMed  Google Scholar 

  19. Birnboim HC: A rapid alkaline extraction method for the isolation of plasmid DNA. Meth Enzymol 100: 243–255, 1983

    PubMed  Google Scholar 

  20. Hawley-Nelson P, Ciccarone V, Gebeyehu G, Jessee J, Felgner P: Focus 15: 73, 1993

    Google Scholar 

  21. Graham GJ, Wright EG, Hewick R, Wolpe SD, Wilkie NM, Donaldson D, Lorimore S, Pragnell IB: Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344: 422–444, 1990

    Google Scholar 

  22. Luckow VA, Lee SC, Barry GF, Olins PO: Efficient generation of infectious recombinant baculoviruses by site-specific transposonmediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67: 4566–4579, 1993

    PubMed  Google Scholar 

  23. Beall CJ, Mahajan S, Kuhn DE, Kolattukudy PE: Site-directed mutagenesis of monocyte chemoattractant protein-1 indentified two regions of the polypeptide essential for biological activity. Biochem J 313: 633–640, 1996

    PubMed  Google Scholar 

  24. Munson PJ, Robard D: Legand: A versatile mmputeiized approach for characterization of ligand-binding systems. Anal Biochem 107: 220–239, 1980

    PubMed  Google Scholar 

  25. Barker JNWN, Jones ML, Mitra RS, Crockett-Torabe E, Fantone JC, Kunkel SL, Warren JS, Dixit VM, Nickolotf BJ: Modulation of keratinocyte-derived interleukin-8 which is diemotactic for neutrophils and T lymphocytes. Am J Pathol 139: 869–876, 1991

    PubMed  Google Scholar 

  26. Graham GJ, MacKenzie J, Lowe S, Tsang MLS, Weatherbee JA, Issacson A, Medicherla J, Fang F, Wilkinson PC, Pragnell IB: Aggregation of the chemokine MIP-1 alpha is a dynamic and reversible phenomenon: Biochemical and biological analyses. J Biol Chem 269: 4974–4978, 1994

    PubMed  Google Scholar 

  27. Herbert C, Vitangzol R, Baker J: Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH-2 terminial residues. J Biol Chem 266: 18989–18994, 1991

    PubMed  Google Scholar 

  28. Proudfoot AEI, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TNC: Extension of recombinant human RANTEs by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271: 2599–2603, 1996

    PubMed  Google Scholar 

  29. Gong JH, Clark-Lewis I: Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J Exp Med 181: 631–640, 1995

    PubMed  Google Scholar 

  30. Lodi PJ, Garrett DS, Kuszewski J, Tsang MLS, Weatherbee JA, Leonard WJ, Gronenborn AM, Clore CM: High-resolution solution structure of the β-chemokine hMIP-1β by multidimensional NMR. Science 263: 1762–1767, 1994

    PubMed  Google Scholar 

  31. Beall CJ, Mahajan S, Kolattukudy PE: Conversion of monocyte chemoattractant protein-1 into a neutrophil attractant by substitution of two amino acids. J Biol Chem 267: 3455–3459, 1992

    PubMed  Google Scholar 

  32. Zhang YJ, Rutledge BJ, Rollins BJ: Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis: Identification of a mutated protein that inhibits MCP-l-mediated monocyte chemotaxis. J Biol Chem 269: 15918–15924, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisman, J.M., Crisman, J.M., Elder, P.J. et al. Identification of amino acids involved in the binding of hMIP-1α to CC-CKR1, a MIP-lα receptor found on neutrophils. Mol Cell Biochem 195, 245–256 (1999). https://doi.org/10.1023/A:1006901109902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006901109902

Navigation