Skip to main content
Log in

Thermal conductivity surface of argon: A fresh analysis

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents a fresh analysis of the thermal conductivity surface of argon at temperatures between 100 and 325 K with pressures up to 70 MPa. The new analysis is justified for several reasons. First, we discovered an error in the compression-work correction, which is applied when calculating thermal conductivity and thermal diffusivity obtained with the transient hot-wire technique. The effect of the error is limited to low densities, i.e., for argon below 5 mol·L−1. The error in question centers on the volume of fluid exposed to compression work. Once corrected, the low-density data agree very well with the available theory for both dilute-gas thermal conductivity and the first density coefficient of thermal conductivity. Further, the corrected low-density data, if used in conjunction with our previously reported data for the liquid and supercritical dense-gas phases, allow us to represent the thermal conductivity in the critical region with a recently developed mode-coupling theory. Thus the new surface incorporates theoretically based expressions for the dilute-gas thermal conductivity, the first density coefficient, and the critical enhancement. The new surface exhibits a significant reduction in overall error compared to our previous surface which was entirely empirical. The uncertainty in the new thermal conductivity surface is ±2.2% at the 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Nieto de Castro and H. M. Roder, J. Res. Natl. Bur. Stand (U.S.) 86:293 (1981).

    Google Scholar 

  2. C. A. Nieto de Castro and H. M. Roder, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982), Vol. I, p. 241.

    Google Scholar 

  3. J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, Physica 143A:314 (1987).

    Google Scholar 

  4. H. M. Roder, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 8:521 (1987).

    Google Scholar 

  5. H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, Int. J. Thermophys. 10:1141 (1989); H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, Natl. Inst. Stand. Tech. (U.S.) Interagency Rep. 88–3902, Oct. (1988).

    Google Scholar 

  6. J. J. Healy, J. J. de Groot, and J. Kestin, Physica 82C:392 (1976).

    Google Scholar 

  7. C. A. Nieto de Castro, B. Taxis, H. M. Roder, and W. A. Wakeham, Int. J. Thermophys. 9:293 (1988).

    Google Scholar 

  8. B. A. Younglove, J. Phys. Chem. Ref. Data 11:Suppl. 1 (1982).

    Google Scholar 

  9. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989).

    Google Scholar 

  10. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).

    Google Scholar 

  11. B. A. Younglove and H. J. M. Hanley, J. Phys. Chem. Ref. Data 15:1323 (1986).

    Google Scholar 

  12. N. J. Trappeniers, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982), Vol. I, p. 232.

    Google Scholar 

  13. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, in Thermophysical Properties of Neon, Argon, Krypton, and Xenon, T. B. Selover, Jr., ed. (Hemisphere, Washington, D.C., 1988), p. 203.

    Google Scholar 

  14. J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 100A:349 (1980).

    Google Scholar 

  15. M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. 77:439 (1981).

    Google Scholar 

  16. A. A. Clifford, P. Gray, A. I. Johns, A. C. Scotts, and J. T. R. Watson, J. Chem. Soc. Faraday Trans. 77:2679 (1981).

    Google Scholar 

  17. E. N. Haran, G. C. Maitland, M. Mustafa, and W. A. Wakeham, Ber. Bunsenges Phys. Chem. 87:657 (1983).

    Google Scholar 

  18. U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259 (1986).

    Google Scholar 

  19. J. Millat, M. Mustafa, M. Ross, W. A. Wakeham, and M. Zalaf, Physica 145A:461 (1987).

    Google Scholar 

  20. J. Millat, M. J. Ross, and W. A. Wakeham, Physica 159A:28 (1989).

    Google Scholar 

  21. D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107:590 (1984).

    Google Scholar 

  22. J. C. Rainwater and D. G. Friend, Phys. Rev. A 36:4062 (1987).

    Google Scholar 

  23. C. A. Nieto de Castro, D. G. Friend, R. A. Perkins, and J. C. Rainwater, Chem. Phys. 145:19 (1990).

    Google Scholar 

  24. J. V. Sengers, R. S. Basu, and J. M. H. Levelt Sengers, NASA Contractor Report No. 3424 (1981).

  25. G. A. Olchowy and J. V. Sengers, Phys. Rev. Lett. 61:15 (1988).

    Google Scholar 

  26. G. A. Olchowy and J. V. Sengers, Int. J. Thermophys. 10:417 (1989).

    Google Scholar 

  27. G. A. Olchowy and J. V. Sengers, Representative Equations for the Transport Properties of Carbon Dioxide in the Critical Region, University of Maryland Technical Report BN 1052 (College Park, MD., 1986).

  28. G. A. Olchowy, Crossover from Singular to Regular Behavior of the Transport Properties of Fluids in the Critical Region, Ph.D. thesis (University of Maryland, College Park, 1989).

    Google Scholar 

  29. R. Mostert, H. R. van den Berg, P. S. van der Gulik, and J. V. Sengers, J. Chem. Phys. 92:5454 (1990).

    Google Scholar 

  30. R. A. Perkins, H. M. Roder, D. G. Friend, and C. A. Nieto de Castro, Physica A 173:332 (1991).

    Google Scholar 

  31. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series 55 [National Bureau of Standards (U.S.), 1972], pp. 17–18.

  32. B. J. Bailey and K. Kellner, Physica 31:444 (1968).

    Google Scholar 

  33. L. D. Ikenberry and S. A. Rice, J. Chem. Phys. 39:156 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, R.A., Friend, D.G., Roder, H.M. et al. Thermal conductivity surface of argon: A fresh analysis. Int J Thermophys 12, 965–984 (1991). https://doi.org/10.1007/BF00503513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503513

Key words

Navigation