Skip to main content
Log in

High pressure studies of Mantle minerals by ab initio variable cell shape molecular dynamics

  • Published:
Molecular Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Catlow, C. R. A. and Price, G. D. (1990) Computer Modelling of Solid State Inorganic Materials, Nature 347, 243–248.

    Google Scholar 

  2. Cohen, R. E., (1987) Elasticity and Equation of State of MgSiO3-Perovskite, Geophys. Res. Lett. 14, 1053–1056.

    Google Scholar 

  3. Parker, S. C. and Price, G. D., (1989) Computer Modelling of Phase Transition in Minerals, Ad. Solid State Chem. 5, 295–327.

    Google Scholar 

  4. Matsui, M., Price, G. D., and Patel., A. (1994) Comparison Between the Lattice Dynamics and Molecular Dynamics Methods: Calculations Results for MgSiO3-perovskite, Geophys. Res. Lett. 21, 1659–1662.

    Google Scholar 

  5. Matsui, M. and Price, G. D., (1992) Computer Simulation of MgSiO3 Polymorphs, Phys. Chem. Min. 18, 365–372.

    Google Scholar 

  6. Angel, R. J., Chopelas, A. and Ross, N. L., (1992) Stability of High-Density Clinoenstatite at Upper-Mantle Pressures, Nature 358, 322–324.

    Google Scholar 

  7. Matsui, M. and Price, G. D. (1991) Simulation of the Pre-melting Behavior of MgSiO3 Perovskite at High Pressures and Temperatures, Nature 351, 735–737.

    Google Scholar 

  8. Kapusta, B. and Guillope, M., (1993) Molecular Dynamics of the Perovskite MgSiO3 at High Temperature: Structural, Elastic, and Thermodynamical Properties, Phys. Earth Planet. Int. 75, 205–224.

    Google Scholar 

  9. Wentzcovitch, R. M., Martins, J. L., and Price, G. D., (1993) Ab initio Molecular Dynamics with Variable Cell Shape: Application to MgSiO3-Perovskite, Phys. Rev. Lett. 44, 2–5.

    Google Scholar 

  10. Wentzcovitch, R. M. and Martins, J. L., (1991) First Principles Molecular Dynamics of Li: Test of a New Algorithm, Sol. Stat. Comm. 78, 831–834.

    Google Scholar 

  11. Wentzcovitch, R. M., (1991) Invariant Molecular Dynamics Approach to Structural Phase Transitions, Phys. Rev. B 44, 2358–2361.

    Google Scholar 

  12. Car, R. and Parrinello, M., (1985) Unified Approach for Molecular Dynamics and Density Functional Theory, Phys. Rev. Lett. 55, 2471–2474.

    Google Scholar 

  13. Wentzcovitch, R. M., Martins, J. L. and Allen, P. B. (1992) Energy Versus Free Energy Conservation in ab initio Molecular Dynamics, Phys. Rev. B 45, 11372–11375.

    Google Scholar 

  14. Lundqvist, S. and March, N. H., (1987) Theory of the Inhomogeneous Electron Gas, Plenun Press, London.

    Google Scholar 

  15. Troullier, N. and Martins, J. L., (1991) Efficient Pseudopotentials for Plane-Wave Calculations, Phys. Rev. B 43, 1993–2003.

    Article  Google Scholar 

  16. Parrinello, M. and Rahman, A., (1980) Crystal Structure and Pair Potentials: A Molecular Dynamics Study, Phys. Rev. Lett. 45, 1196–1199.

    Google Scholar 

  17. Andersen, H. C. (1980) Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys. 72, 2374–2393.

    Google Scholar 

  18. Wentzcovitch, R. M., (1994) The hcp to bcc Pressure Induced Transition in Mg Simulated by ab initio Molecular Dynamics, Phys. Rev. B 50, 10358–10361.

    Google Scholar 

  19. Wentzcovitch, R. M., Schulz, W., and Allen, P. B., (1994) VO2: Peierls or Mott Hubbard? A View from Band Theory, Phys. Rev. Lett. 72, 3389–3392.

    Google Scholar 

  20. Wentzcovitch, R. M. and Liu, A. Y., (1994) Stability of Carbon Nitride Solids, Phys. Rev. B 50, 10362–10365.

    Google Scholar 

  21. Woodhouse, J. H. and Dziewonski, A. M., (1989) Seismic Modeling of Earth's Large-Scale Three-Dimensional Structure, Phil. Trans. R. Soc. Lond. A 328, 291–308.

    Google Scholar 

  22. Wentzcovitch, R. M., Ross, N. L., and Price, G. D., (1994) Ab initio Study of MgSiO3 and CaSiO3-Perovskites at Lower Mantle Pressures Phys. Earth Planet. Int., in press.

  23. Wentzcovitch, R. M., Hugh-Jones, D. A., Angel, R. J., and Price, G. D., (1995) Ab Initio Study of MgSiO3 C2/c Enstatite, Phys. Chem. Min., in press.

  24. Hemley, R. and Cohen, R., (1992) Silicate Perovskite., Annu. Rev. Earth Planet. Sci. 20, 553–601.

    Google Scholar 

  25. Andrault, D. and Poirier, J. P., (1991) Evolution of the Distortion of Perovskites Under Pressure: An EXAFS Study of BaZrO3, SrZrO3, and CaGeO3, Phys. Chem. Minerals 18, 91–105.

    Google Scholar 

  26. Horiuchi, H., Ito, E., and Weidner, D., (1987) Perovskite Type MgSiO3: Single Crystal X-ray Diffraction Study, Am. Mineral. 72, 357–360.

    Google Scholar 

  27. Cohen, R. E., Boyer, L. L., Mehl, M. J., Pickett, W. E., and Krakauer, H. (1989) Electronic Structure and Total Energy Calculations For Oxide Perovskite and Superconductors. See Navrotsky and Weidner[56], 55–66.

  28. Ross, N. L. and Hazen, R. M., (1990) High Pressure Crystal Chemistry of MgSiO3 Perovskite, Phys. Chem. Minerals 17, 228–237.

    Google Scholar 

  29. Knittle, E. and Jeanloz, R., (1987) Synthesis and Equation of State of (Mg,Fe)SiO3 to over 100 GPa, Science 235, 668–670.

    Google Scholar 

  30. Kudoh, Y., Ito, E. and Takeda, H., (1987) Effect of Pressure on the Crystal Structure of Perovskite Type MgSiO3 Phys. Chem. Minerals 14, 350–354.

    Google Scholar 

  31. Yagi, T., Mao, H. K., and Bell, P. M., (1982) Hydrostatic Compression Perovskite-Type MgSiO3, in Advances in Physical Geochemistry, Ed. by S. KSaxena, Springer, Berlin, 317–25.

    Google Scholar 

  32. Mao, H. K., Hemley, R. J., Shu, J., Chen, L. C., and Jephcoat, A. P., (1988–1989b) The Effect of Pressure, Temperature, and Composition on Lattice Larameters and Density of (Fe,Mg)SiO3-Perovskites to 30 GPa, Ann. Rep. Div. Geophys. Lab., 82–89.

  33. Yeganeh-Haeri, A., Weidner, D. J., and Ito, E., (1989) Single Crystal Elastic Moduli of Magnesium Metasilicate Perovskite See Navrotsky and Weidner [56], 13–25.

  34. Stixrude, L. and Cohen, R. E., (1993) Stability of Orthorhombic MgSiO3-Perovskite in the Earth's Lower Mantle, Nature 364, 613–616.

    Google Scholar 

  35. D'Arco, P., Sandrone, G., Dovesi, R., Orlando, R., and Saunders, V. R., (1993) A Quantum Mechanical Study of the Perovskite Structure type of MgSiO3, Phys. Chem. Minerals 20, 407–414.

    Google Scholar 

  36. Nielsen, O. H. and Martin, R., (1985) Quantum Mechanical Theory of Stress and Force, Phys. Rev. B 32, 3780.

    Google Scholar 

  37. Matsui, M. and Akaogi, M., and Matsumoto, T., (1987) Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3, Phys. Chem. Minerals 14, 101–106.

    Google Scholar 

  38. Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., and Wu, Y., (1989) Stability and Equation of State of CaSiO3 Perovskite to 134 GPa, J. Geophys. Res. 94, 17889–17894.

    Google Scholar 

  39. Hemley, R. J., Jackson, M. D., and Gordon, R. G., (1987) Theoretical Study of the Structure, Lattice Dynamics, and Equations of State of Perovskite-type MgSiO3 and CaSiO3, Phys. Chem. Minerals 14, 2–12.

    Google Scholar 

  40. Tarrida, M. and Richet, P., (1989) Equation of State of CaSiO3-Perovskite to 96 GPa, Geophys. Res. Lett. 16, 1351–1354.

    Google Scholar 

  41. Yagi, T., Kusanaga, S., Tsuchida, Y., Fukai, Y., (1989) Isothermal Compression and Stability of Perovskite-type CaSiO3 Proc. Jpn. Acad. Ser. B 65, 129–132.

    Google Scholar 

  42. Liu, L.-G. and Ringwood, A. E., (1975) Synthesis of a Perovskite-Type Polymorph of CaSiO3 Earth Planet. Sci. Lett. 28, 209–211.

    Google Scholar 

  43. Cameron, M. E. and Papike, J. J., (1980) Crystal Chemistry of Silicate Pyroxenes, M. S. A. Reviews in Mineralogy 7, 5–92.

    Google Scholar 

  44. Putnis, A., (1992) Introduction to Mineral Science, Cambridge Press, Cambridge.

    Google Scholar 

  45. Ringwood, A. E., (1975) Composition and Petrology of the Earth's Mantle, McGraw-Hill, New York.

    Google Scholar 

  46. Yamamoto, K. and Akimoto, S., (1977) The System MgO-SiO2-H2O at High Pressures and Temperatures: Stability Field for Hydroxyl-Hondrodite, Hydroxyl-Clinohumite and the 10 Å Phase, Amer. J. Sc., 277, 288–312.

    Google Scholar 

  47. Akaogi, M. and Akimoto, S., (1977) Pyroxene-garnet solid solution equilibria in the system Mg4Si4O12−Mg3Al3O12 and Fe4Si4O12−Fe4Al2Si3O12 at high-pressures and temperatures, Phys. Earth and Planet. Sc. 15, 90–106.

    Google Scholar 

  48. Pacalo, R. E. G. and Gasparik, T., (1990) Reversals of the Orthoenstatite-Clinoenstatite Transition at High-Pressures and High-Temperatures, J. Geophys. Res. 95, 15853–15858.

    Google Scholar 

  49. Kanzaki, M., (1991) Ortho-clinoenstatite transition, Phys. Chem. Min. 17, 726–730.

    Google Scholar 

  50. Hugh-Jones, D. A. and Angel, R. J., (1994) A Compressional Study of MgSiO3 Orthoenstatite to 8.5 GPa, Amer. Mineral. 79, 405–410.

    Google Scholar 

  51. Angel, R. J. and Hugh-Jones, D. A., (1994) Equations of State of Enstatite Pyroxenes, J. Geophys. Res., in press.

  52. Langreth, D. C., and Mehl, M. J., (1981) Easily implementable non-local exchange-correlation energy functionals, Phys. Rev. Lett. 46, 446–449.

    Google Scholar 

  53. Perdew, J. P. and Wang, Y., (1986) Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation, Phys. Rev. B 33, 8822–8825.

    Google Scholar 

  54. Becke, A. D., (1988) Density Functional Exchange Energy Approximation with Correct Asymptotic Behaviour, Phys. Rev. A 38, 3088–90.

    Google Scholar 

  55. Lee, C., Vanderbilt, D., Lasoonen, K., Car, R., and Parrinello, M., (1992) Ab Initio studies of high pressure phases of ice, Phys. Rev. Lett. 69, 462–465.

    Google Scholar 

  56. Navrotsky, A. and Weidner, D. J., (1989) Perovskite a Structure of Great Interest for Geophysics and Materials Science, Washington D. C., Am. Geophys. Union.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentzcovitch, R.M., Price, G.D. High pressure studies of Mantle minerals by ab initio variable cell shape molecular dynamics. Mol Eng 6, 39–61 (1996). https://doi.org/10.1007/BF00161722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161722

Key words

Navigation