Skip to main content
Log in

Mapping loci associated with milling yield in wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A partial genetic linkage map constructed using 150 single seed descent (SSD) lines generated from a cross between the hexaploid wheat varieties ‘Schomburgk’ and ‘Yarralinka’ was used to identify loci controlling milling yield. Milling yield data were obtained using seed collected from field trials conducted at different sites over two seasons. The estimated broad-sense heritability of milling yield in this population was calculated as 0.48. In the preliminary analysis, two regions were identified on chromosomes 3A and 7D, which were significantly associated with milling yield and accounted for 22% and 19% of the genetic variation, respectively. Bulked segregant analysis in combination with AFLP identified other markers linked to these loci, as well as an additional region on chromosome 5A, which accounted for 19% of the genetic variation. The applicability of these markers as selection tools for breeding purposes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autrique E, Singh RP, Tanksley SD, Sorrells ME: Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38: 75–83 (1995).

    Google Scholar 

  2. Bass EJ: Wheat flour milling. In: Pomeranz Y (ed) Wheat: Chemistry and Technology, vol 2, pp. 1–68. American Association of Cereal Chemists, St Paul, MN (1988).

    Google Scholar 

  3. Blanco A, De Giovanni C, Laddomada B, Sclancalepore A, Simeone R, Devos KM, Gale MD: Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed 115: 310–316 (1996).

    Google Scholar 

  4. Berman M, Bason MI, Ellison F, Penden G, Wrigley CW: Image analysis of whole grains to screen for flour-milling yield in wheat breeding. Anal Tech Inst 73: 323–327 (1996).

    Google Scholar 

  5. Brigneti: Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theor Appl Genet 94: 198–203 (1997).

    Google Scholar 

  6. Dedryver F, Jubier M, Thouvenin J and Goyeau H: Molecular marker linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39: 830–835 (1996).

    Google Scholar 

  7. Devos K, Gale MD: The genetic maps of wheat and their potential in plant breeding. Outlook Agric 22: 93–99 (1993).

    Google Scholar 

  8. Galbia G, Quarne SA, Sutka J, Morgounov A: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90: 1174–1179 (1995).

    Google Scholar 

  9. Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM: Genetic maps of hexaploid wheat. Proceedings of the 8th International Wheat Genetics Symposium, China Agricultural Scientech Press, Beijing, China, pp. 29–40 (1995).

    Google Scholar 

  10. Gimelfarb A, Lande R: Marker-assisted selection and marker-QTL associations in hybrid populations. Theor Appl Genet 91: 522–528 (1995).

    Google Scholar 

  11. Hartl DL, Freifelder D, Snyder LA: Quantitative genetics. In: Basic Genetics, p. 241. Jones and Bartlett, CA, USA (1988).

    Google Scholar 

  12. Hook SCW: Specific weight and wheat quality. J Sci Food Agric 35: 1136–1141 (1984).

    Google Scholar 

  13. Kosambi DD: The estimation of map distances from recombinational values. Ann Eugen 12: 173–175 (1944).

    Google Scholar 

  14. Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756 (1990).

    Google Scholar 

  15. Lander ES, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199 (1989).

    Google Scholar 

  16. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).

    Google Scholar 

  17. Lane P, Galway N, Alvey N: Genstat 5: An Introduction. Oxford University Press, Oxford/New York (1988).

    Google Scholar 

  18. Law CN, Young CF, Brown JWS, Snape JW, Worland AJ: The study of grain-protein control in wheat using wholechromosome substitution lines. In: Seed Protein Improvement by Nuclear Techniques, pp. 483–502. International Atomic Energy Agency, Vienna (1978).

    Google Scholar 

  19. Manly KF, Elliott RW: RI manager, a microcomputer program for analysis of data from recombinant inbred strains. Mammal Genome 1: 123–126 (1993).

    Google Scholar 

  20. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE: Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359–366 (1996).

    Google Scholar 

  21. Marshall DR, Ellison FW, Mares DJ: Effects of grain shape and size on milling yield in wheat. I. Theoretical analysis based on simple geometrical models. Aust J Agric Res 35: 619–630 (1984).

    Google Scholar 

  22. Marshall DR, Mares DJ, Moss HJ, Ellison FW: Effects of grain shape and size on milling yields in wheat. II. Experimental Studies. Aust J Agric Res 37: 331–342 (1986).

    Google Scholar 

  23. Michelmore RW, Paran I, Kesseli RV: Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832 (1991).

    Google Scholar 

  24. Morrison WR, Law CN, Wylie LJ, Coventry AM, Seekings J: The effect of group-5 chromosomes on the free polar lipids and bread making quality of wheat. J Cereal Sci 9: 41–51 (1989).

    Google Scholar 

  25. Nelson JC: QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3: 229–235 (1997).

    Google Scholar 

  26. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P: Molecular mapping of wheat. Homoeologous group 2. Genome 38: 516–524 (1995).

    Google Scholar 

  27. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P: Molecular mapping of wheat. Homoeologous group 3. Genome 38: 525–533 (1995).

    Google Scholar 

  28. Nelson JC, Sorrells ME, van Deynze AE, Lu Y-H, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA: Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731 (1995).

    Google Scholar 

  29. Parker GD, Chalmers KJ, Rathjen AJ, Langridge P: Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97: 238–245 (1998).

    Google Scholar 

  30. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW: A microsatellite map of wheat. Genetics 149: 2007–2023 (1998).

    Google Scholar 

  31. Rosenthal RD: The grain quality analyser. Food Technol Aust 27: 351 (1975).

    Google Scholar 

  32. Shuey WC: A wheat sizing technique for predicting flour milling yield. Cereal Sci Today 5: 71, 72, 75 (1960).

    Google Scholar 

  33. Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M: Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93: 580–586 (1996).

    Google Scholar 

  34. Stenvert NL: The measurement of wheat hardness and its effect of milling characteristics. Aust J Exp Agric Anim Husb 12: 159–164 (1972).

    Google Scholar 

  35. Stenvert NL, Moss R: The separation and technological significance of the outer layers of the wheat grain. J Sci Food Agric 25: 629–635 (1974).

    Google Scholar 

  36. Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones JDG: Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8: 785–794 (1995).

    Google Scholar 

  37. van Deynze AE, Dubdovsky J, Gill K5, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R: Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38: 45–59 (1995).

    Google Scholar 

  38. Vos P, Hogers R, Blecker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414 (1995).

    Google Scholar 

  39. William HM, Hoisington D, Singh RP, Gonzalez-de-Leon D: Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40: 253–260 (1997).

    Google Scholar 

  40. Williams PC: Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chem 52: 561–576 (1975).

    Google Scholar 

  41. Zabeau M, Vos P: Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application 92402629.7; Publication number EP 0534858 A1 (1993).

  42. Zeleny L: Criteria of wheat quality. In: Pomeranz Y (ed) Wheat Chemistry and Technology, pp. 19–49. American Association of Cereal Chemists, St Paul, MN (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, G., Chalmers, K., Rathjen, A. et al. Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Molecular Breeding 5, 561–568 (1999). https://doi.org/10.1023/A:1009678023431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009678023431

Navigation