Skip to main content
Log in

A comparison between natural and anthropogenic emissions of the reduced sulfur compounds H2S, COS, and CS2 in a tropical industrialized region

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Extensive ambient concentration and flux measurements have been performed in the heavily polluted region of Cubatão/Brazil. Substantial contribution of anthropogenic sources to the local reduced sulfur burden has been observed. As a result of this atmospheric sulfur burden average gas exchange between vegetated soils and the atmosphere shows net deposition. Based mainly on own field measurements a local budget for H2S, COS, and CS2 has been made up in order to calculate anthropogenic emissions. All major sources and sinks in the chosen atmospheric reservoir (24×20×1 km) have been taken into account. Due to the small reservoir size fluxes across its boundaries are dominant sources and sinks. The differences between outflux and influx therefore account for the unknown anthropogenic emissions which have been determined to be 80±10 (H2S), 66±15 (COS), and 29±6 Mmol year-1 (CS2). Other sources and sinks like natural emissions, chemical conversion, and dry deposition turned out to be of minor importance on a local scale. In fact, inside the investigated reservoir natural emissions were below 0.5% of anthropogenic emissions. Anthropogenic emissions of H2S, COS, and CS2 quantified in this work have been compared with global emission estimates for these compounds made by other authors. We conclude that global anthropogenic emissions of reduced sulfur compounds especially of COS and CS2 are currently under-estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AdrianG. and FiedlerF., 1991: Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations, Beitr. Phys. Atmosph. 64, 27–48.

    Google Scholar 

  • BandyA. R., ThorntonD. C., and JohnsonJ. E., 1993: Carbon disulfide measurements in the atmosphere of the western north Atlantic and the northwestern south Atlantic Oceans, J. Geophys. Res. 98 (D12), 23449–23457.

    Google Scholar 

  • BandyA. R., ThorntonD. C., ScottD. L., LalevicM., LewinE. E., and DriedgerIIIA. R., 1992: A time series of carbonyl sulfide in the northern hemisphere, J. Atmos. Chem. 14, 527–534.

    Google Scholar 

  • Beilke, S. and Gravenhorst, G., 1980: Cycles of pollutants in the troposphere, in: B. Versino and M. Ott (eds), Physico-Chemical Behaviour of Atmospheric Pollutants, Proceedings of the First European Symposium, Ispra, 17–18 October 1979, pp. 331–353.

  • BerresheimH., 1993: Distribution of atmospheric sulphur species over various wetland regions in the southeastern U.S.A., Atmos. Environ. 27A, 211–221.

    Google Scholar 

  • BerresheimH. and VulcanV. D., 1992: Vertical distribution of COS, CS2, DMS and other sulfur compounds in a loblolly pine forest, Atmos. Environ. 26A, 2031–2036.

    Google Scholar 

  • BhatiaS. P., 1978: Organosulfur emissions from industrial sources, in: J. O.Nriagu (ed.), Sulfur in the Environment, pt. 1, Wiley, New York, pp. 51–83.

    Google Scholar 

  • BingemerH. G., BürgermeisterS., ZimmermannR. L., and GeorgiiH.-W., 1990: Atmospheric OCS: Evidence for a contribution of anthropogenic sources? J. Geophys. Res. 95 (D12), 20617–20622.

    Google Scholar 

  • BrownK. A. and BellJ. N. B., 1986: Vegetation — The missing sink in the global cycle of COS, Atmos. Environ. 20, 537–540.

    Google Scholar 

  • CarrollM. A., HeidtL. E., CiceroneR. J., and PrinnR. G., 1986: OCS, H2S and CS2 fluxes from a salt water marsh, J. Atmos. Chem. 4, 375–396.

    Google Scholar 

  • CastroM. S. and GallowayJ. N., 1991: A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere, J. Geophys. Res. 96, 15427–15437.

    Google Scholar 

  • Chadwick, R. C., 1977: Uptake of H 2 S and COS by Vegetation, Atomic Energy Research Establishment-M2898, Harwell, England.

  • ChinM. and DavidD. D., 1993: Global sources and sinks of COS and CS2 and their distributions, Global Biogeochemical Cycles 7, 321–337.

    Google Scholar 

  • CooperD. J. and SaltzmanE. S., 1993: Measurements of atmospheric dimethylsulfide, hydrogen sulfide, and carbon disulfide during GTE/CITE 3, J. Geophys. Res. 98 (D12), 23297–23409.

    Google Scholar 

  • CooperD. J., DeMelloW. Z., CooperW. J., ZikaR. G., SaltzmanE. S., ProsperoJ. M., and SavoieD. L., 1987: Short-term variability in biogenic sulphur emissions from a Florida Spartina alterniflora marsh, Atmos. Environ. 21, 7–12.

    Google Scholar 

  • CrutzenP. J. and GidelL., 1983: A two-dimensional photochemical model of the atmosphere. 2: The tropospheric budget of the anthropogenic chlorocarbons CO, CH4, CH3Cl, and the effect of various NO x sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.

    Google Scholar 

  • CrutzenP. J., HeidtL. E., KrasnecJ. P., PollockW. H., and SeilerW., 1979: Biomass burning as a source of the atmospheric gases CO, H2, N2O, CH3Cl, and COS, Nature 282, 253–256.

    Google Scholar 

  • FerekR. J. and AndreaeM. O., 1984: Photochemical production of carbonyl sulfide in marine surface waters, Nature 307, 148–150.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N., 1986: Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley & Sons, p. 369.

  • FriedA., HenryB., RagazziR. A., MerrickM., StokesJ., PyzdrowskiT., and SamsR., 1992: Measurements of carbonyl sulfide in automotive emissions and an assessment of its importance to the global sulfur cycle, J. Geophys. Res. 97 (D13), 14621–14634.

    Google Scholar 

  • GoldanP. D., KusterW. C., AlbrittonD. L., and FehsenfeldF. C., 1987: The measurement of natural sulfur emissions from soils and vegetation: Three sites in the eastern United States revisited, J. Atmos. Chem. 5, 439–467.

    Google Scholar 

  • GoldanP. D., FallR., KusterW. C., and FehsenfeldF. C., 1988: Uptake of COS by growing vegetation. A major tropospheric sink, J. Geophys. Res. 93, 14186–14192.

    Google Scholar 

  • GraedelT. E. and CrutzenP. J., 1994: Chemie der Atmosphäre — Bedeutung für Klima und Umwelt, Spektrum Akademischer Verlag, Heidelberg, 301ff., 335ff.

    Google Scholar 

  • HarnischJ., BorchersR., FabianP., and KourtidisK., 1995a: Aluminium production as a source of atmospheric carbonyl sulfide (COS), Environ. Sci. & Pollut. Res. 2 (3), 161–162.

    Google Scholar 

  • HarnischJ., BorchersR., FabianP., and KourtidisK., 1995b: COS, CS2, and SO2 in aluminium smelter exhaust, Environ. Sci. & Pollut. Res. 2 (4), 229–232.

    Google Scholar 

  • HaunoldW., GeorgiiH.-W., and OckelmannG., 1992: Gas chromatographic analysis of atmospheric sulfur dioxide and reduced sulfur compounds, LC GC Int. 5, 28–35.

    Google Scholar 

  • HuberB., 1994: Austausch flüchtiger Schwefelverbindungen in land- und forstwissenschaftlichen Ökosystemen, Frauenhofer-Institut für Atmosphärische Umweltforschung. Wiss.-Verl. Maraun, Frankfurt/M., 191 p.

    Google Scholar 

  • JaeschkeW. and HermannJ., 1981: Measurements of H2S in the atmosphere, Int. J. Environ. Anal. Chem. 10, 107–120.

    Google Scholar 

  • JaeschkeW., ClaudeH., and HermannJ., 1980: Sources and sinks of atmospheric H2S, J. Geophys. Res. 85 (C10), 5639–5644.

    Google Scholar 

  • JaeschkeW., DippellJ., SitalsR., and HaunoldW., 1994: Measurements of reduced sulphur compounds in an industrialized tropical region — Cubatão (Brazil), Intern. J. Environ. Anal. Chem. 54, 315–337.

    Google Scholar 

  • JohnsonJ. E., BandyA. R., ThorntonD. C., and BatesT. S., 1993: Measurements of atmospheric carbonyl sulfide during the NASA chemical instrumentation test and evaluation project: Implications for the global COS budget, J. Geophys. Res. 98 (D12), 23443–23448.

    Google Scholar 

  • KesselmeierJ. and MerkL., 1993: Exchange of carbonyl sulfide (COS) between agricultural plants and the atmosphere: Studies on the deposition of COS to peas, corn and rapeseed, Biogeochemistry 23, 47–59.

    Google Scholar 

  • KhalilM. A. K. and RasmussenR. A., 1984: Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the earth's atmosphere, Atmos. Environ. 18, 1805–1813.

    Google Scholar 

  • KlumppA., KlumppG., and DomingosM., 1994: Plants as bioindicators of air pollution at the Serra do Mar near the industrial complex of Cubatão, Brazil, Environ. Pollut. 85, 109–116.

    Google Scholar 

  • KucinskiB., 1982: Cubatão, uma tragédia ecológica, Ciencia Hoje 1 (1), 10–24.

    Google Scholar 

  • LambB., WestbergH., AllwineG., BamesbergerL., and GuentherG., 1987: Measurement of biogenic sulfur emissions from soils and vegetation: Application of dynamic enclosure methods with Natusch filter and GC/FPD analysis, J. Atmos. Chem. 5, 469–491.

    Google Scholar 

  • MaroulisP. J. and BandyA. R., 1980: Measurements of atmospheric concentrations of CS2 in the eastern United States, Geophys. Res. Lett. 7, 681–684.

    Google Scholar 

  • MihalopoulosN., BonsangB., NguyenM., KanakidouM., and BelvisoS., 1989: Field observations of carbonyl sulfide deficit near the ground: possible implication of vegetation, Atmos. Environ. 23, 2159–2166.

    Google Scholar 

  • NguyenB. C., MihalopoulosN., and PutaudJ. P., 1994: Rice straw burning in Southeast Asia as a source of CO and COS to the atmosphere, J. Geophys. Res. 99, 16435–16439.

    Google Scholar 

  • NguyenB. C., MihalopoulosN., PutaudJ. P., and BonsangB., 1995: Carbonyl sulfide emissions from biomass burning in the tropics, J. Atmos. Chem. 22, 55–65.

    Google Scholar 

  • PeytonT. O., StelleR. V., and MabeyW. R., 1976: Carbon disulfide, carbonyl sulfide (COS): literature review and environmental assessment, Rep. 68–01–2940, Stanford Res. Inst., Stanford, Calif., 1976.

    Google Scholar 

  • PlaneJ. M. C., 1989, Gas-phase atmospheric oxidation of biogenic sulfur compounds. A review, in: E. S.Saltzman and W. J.Cooper (eds), Biogenic Sulphur in the Environment, Am. Chem. Soc., Washington, pp. 404–423.

    Google Scholar 

  • PosW. H. and BerresheimH., 1993: Automotive tire wear as a source for atmospheric OCS and CS2, Geophys. Res. Lett. 20 (9), 815–817.

    Google Scholar 

  • Protoschill-KrebsG. and KesselmeierJ., 1992: Enzymatic pathways for the metabolization of carbonyl sulphide (COS) by higher plants, Botanica Acta 105, 206–212.

    Google Scholar 

  • RyaboshapkoA. G., 1983: The atmospheric sulphur cycle, in: M. A.Ivanov and J. P.Freney (eds), The Global Biogeochemical Sulphur Cycle, John Wiley & Sons, Chichester, pp. 203–296.

    Google Scholar 

  • Sehmel, G. A., 1980: Model predictions and a summary of dry deposition velocity data, in: D. S. Shriner, C. R. Richmond, and S. E. Lindberg (eds), Atmospheric Sulfur Deposition Environmental Impact and Health Effects, pp. 223–236.

  • ServantJ., 1989: Les sources et les puits d'oxysulfure de carbone (COS) à l'echelle mondiale, Atmos. Res. 23, 105–116.

    Google Scholar 

  • SlattB. J., NatushD. F. S., ProsperoJ. M., and SavoieD. L., 1978: Hydrogen sulfide in the atmosphere of the northern equatorial Atlantic Ocean and its relation to the global sulfur cycle, Atmos. Environ. 12, 981–991.

    Google Scholar 

  • StaubesR., GeorgiiH.-W., and OckelmannG., 1978: Flux of COS, DMS and CS2 from various soils in Germany, Tellus 41B, 305–313.

    Google Scholar 

  • TaylorJr.G. E., McLaughlinJr.S. B., ShrinerD. S., and SelvidgeW. J., 1983: The flux of sulfur-containing gases to vegetation, Atmos. Environ. 17, 789–796.

    Google Scholar 

  • WhelpdaleD. M., 1992: An overview of the atmospheric sulphur cycle, in: R. W.Howarth, J. W. B.Stewart, and M. V.Ivanov (eds), Sulphur Cycling on the Continents, John Wiley & Sons, Chichester, pp. 5–26.

    Google Scholar 

  • ZeppR. G. and AndreaeM. O., 1994: Factors affecting the photochemical formation of carbonyl sulfide in sea water, Geophys. Res. Lett. 21, 2812–2816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dippell, J., Jaeschke, W. A comparison between natural and anthropogenic emissions of the reduced sulfur compounds H2S, COS, and CS2 in a tropical industrialized region. J Atmos Chem 25, 251–270 (1996). https://doi.org/10.1007/BF00053795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053795

Key words

Navigation