Skip to main content
Log in

Effect of Structure on Environmentally Assisted Subcritical Crack Growth in Brittle Materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Subcritical crack growth in brittle materials is considered when it is thermally activated and water vapor affected. Effects of material structure on the crack growth were investigated. Special case of subcritical crack growth is examined when the crack growth is decided by water vapor enhanced rupture of some particulate strength controlling elements of material structure. The water vapor is assumed to be transported to these elements through the material by diffusion in a gas filling a system of interconnected open pore channels in the material volume. Calculated crack velocity plots versus the stress intensity factor, temperature and humidity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O.L. and Grew, P.C. (1977). Stress corrosion theory of crack propagation with application to geophysics. Review of Geophysics and Space Physics 15, 77–104.

    ADS  Google Scholar 

  • Atkinson, B.K. and Meredith, P.G. (1987). The theory of subcritical crack growth with application to minerals and rocks. (Edited by B.K. Atkinson), Fracture Mechanics of Rock. Academic Press, 111–166.

  • Banks-Sills, L. and Salganik, R. (1994). An asymptotic approach applied to a longitudinal crack in an adhesive layer. International Journal of Fracture 68, 55–73.

    Article  Google Scholar 

  • Bartenev, G.M. and Razumovskaya, I.V. (1963). Time dependence of the strength of brittle materials in surface-active media. Soviet Physics, Doklady 8, 602–604.

    ADS  Google Scholar 

  • Berry, J.P. (1972). Fracture of polymeric glasses. (Edited by H. Liebowitz), Fracture, Vol. VII. Academic Press, New York, 37–92.

    Google Scholar 

  • Bershtein, V.A. (1987). Mechanical-Hydrolytic Processes and Strength of Solids, Nauka, Leningrad, (in Russian).

    Google Scholar 

  • Brouers, F. and Ramsamugh, A. (1986). Relation between conductivity and fluid flow permeability in porous alumina ceramics. Solid State Communications 60, 951–953.

    Article  ADS  Google Scholar 

  • Charles, R.J. (1961). A review of glass strength. (Edited by J.E. Burke), Progress in Ceramic Science 1, Pergamon Press, New York, 1–38.

    Google Scholar 

  • Dowling, N.E. (1993). Mechanical Behavior of Materials, Prentice-Hall, Englewood Clifts, New Jersey.

    Google Scholar 

  • D'yakonov, M.I. (1987). Tunnel breaking of a stretched atomic chain. Soviet Physics, Solid State 29, 1493–1496.

    Google Scholar 

  • Entov, V.M. and Salganik, R.L. (1968). The Prandtl model of brittle fracture. Mechanics of Solids 3, 79–89.

    Google Scholar 

  • Fuller, Jr., E.R. and Thomson, R.M. (1978). Lattice theories of fracture. (Edited by R.C. Bradt, D.P.H. Hasselman and F.F. Lange), Fracture Mechanics of Ceramics 4, Plenum Press, New York, 507–548.

    Google Scholar 

  • Gilman, J.J. and Tong, H.C. (1971). Quantum tunneling as an elementary fracture process. Journal of Applied Physics 42, 3479–3486.

    Article  ADS  Google Scholar 

  • Handbook of Physical Quantities (1997) (Edited by I. Grigoriev and E. Melikhov), CRC Press.

  • Henager, Jr., C.H. and Johnes, R.H. (1994). Subcritical crack growth in CVI silicon carbide reinforced with nicalon fibers: experiment and model. Journal of American Ceramic Society 77, 2381–2394.

    Article  Google Scholar 

  • Kittel, C. (1969). Thermal Physics, J. Wiley and Sons, New York.

    Google Scholar 

  • Lawn, B.R. and Wilshaw, T.R. (1975). Fracture of Brittle Solids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Marero, T.A. and Mason, E.A. (1972). Gaseous diffusion coefficients. Journal of Physical and Chemical Reference Data 1, 3–76.

    Article  Google Scholar 

  • Mishalske, T.A. and Bunker, B.C. (1984). Slow fracture model on strained silicate structures. Journal of Applied Physics 56, 2686–2693.

    Article  ADS  Google Scholar 

  • Reed, J.R. (1995). Principles of Ceramics Processing, Second Edition, John Wiley and Sons, New York.

    Google Scholar 

  • Regel, V.R., Slutsker, A.I. and Tomashevsky, E.E. (1974). Kinetic Nature of Strength of Solids, Nauka, Moscow, (in Russian).

    Google Scholar 

  • Salganik, R.L. (1969). Temperature dependence of the rupture lifetime of solids. Soviet Physics, Doklady 14, 221–223.

    ADS  Google Scholar 

  • Salganik, R.L. (1970a). On the fracture kinetics of solids. International Journal of Fracture Mechanics 6, 1–5.

    Article  Google Scholar 

  • Salganik, R.L. (1970b). Fluctuational rupture mechanism. Soviet Physics, Solid State 12, 1051–1056.

    Google Scholar 

  • Salganik, R.L. (1994). The adhesive joint fracture due to crack propagation affected by heat and active agent concentration. International Journal of Fracture 65, 141–159.

    Google Scholar 

  • Salganik, R.L. and Chertkov, V.Ya. (1969). Reduction of strength under the action of shrinkage stresses. Mechanics of Solids 4, 118–124.

    Google Scholar 

  • Salganik, R.L., Slutsker, A.I. and Aidarov, Kh. (1984). Quantum features in the fracture kinetics of solids. Soviet Physics, Doklady 29, 136–138.

    ADS  Google Scholar 

  • Shie, J. (1972). Quantum reactions in solids. Thesis, Department of Materials Science, State University of New York at Stony Brook.

  • Slutsker, A.I., Dmitriev, A.V. and Parfenova, E.E. (1993). Temperature dependence of the strength of silicon nitride ceramics. Technical Physics 38, 13–16.

    ADS  Google Scholar 

  • Slutsker, A.I., Veliev, T.M., Alieva, I.K. and Abasov, S.A. (1991). Kinetics of polymer failure at moderate and low temperatures. Makromolekulare Chemie. Macromolecular Symposia 41, 109–118.

    Google Scholar 

  • Thomson, R. Bond breaking at low T. Report, ARPA Materials Research Council Proceedings.

  • Weiner, J.H. (1983). Statistical Mechanics of Elasticity. J. Wiley and Sons, New York.

    MATH  Google Scholar 

  • Weiss, V. (1971). Notch analysis of fracture. (Edited by H. Liebowitz), Fracture, Vol. III. Academic Press, New York and London, 227–264.

    Google Scholar 

  • Wiederhorn, S.M. (1967). Influence of water vapor on crack propagation in soda-lime glass. Journal of American Ceramic Society 50, 407–414.

    Article  Google Scholar 

  • Wiederhorn, S.M. (1978) Mechanisms of subcritical crack growth in glass. (Edited by R.C. Bradt, D.P.H. Hasselman and F.F. Lange), Fracture Mechanics of Ceramics 4, Plenum Press, New York, 549–579.

    Google Scholar 

  • Wiederhorn, S.M. and Bolz, L.H. (1970). Stress corrosion and static fatigue of glass. Journal of American Ceramic Society 53, 543–548.

    Article  Google Scholar 

  • Wiederhorn, S.M., Frieman, S.M., Fuller, E.R. and Simmons, C.J. (1982). Effect of water and other dielectrics on crack growth. Journal of Material Science 17, 3460–3478.

    Article  ADS  Google Scholar 

  • Wiederhorn, S.M., Fuller, Jr., E.R. and Thomson, R. (1980). Micromechanisms of crack growth in ceramics and glasses in corrosive environments. Metal Science 14, 450–458.

    Google Scholar 

  • Wiederhorn, S.M., Johnson, H., Diness, A.M. and Heuer, A.H. (1974). Fracture of glass in vacuum. Journal of American Ceramic Society 57, 336–341.

    Article  Google Scholar 

  • Yokobori, T. (1965). The Strength, Fracture and Fatigue of Materials, P. Noordhoff Groningen.

  • Zhurkov, S.N. and Narzulaev, B.K. (1953). Time dependence of strength of solids. Soviet Phys. Tech. Phys. 23, 1677–1689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salganik, R.L., Rapoport, L. & Gotlib, V.A. Effect of Structure on Environmentally Assisted Subcritical Crack Growth in Brittle Materials. International Journal of Fracture 87, 21–46 (1997). https://doi.org/10.1023/A:1007459100727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007459100727

Navigation