Skip to main content
Log in

Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Accumulation of potassium ions (K+) in expanding or most recently expanded leaves and exclusion of sodium ions (Na+) from them (K+/Na+ selectivity) have been shown to be associated with salt stress tolerance in wheat and Lophopyrum elongatum, a highly salt stress tolerant relative of wheat. This physiological trait is expressed in an amphiploid from the cross of wheat (cv. Chinese Spring) × L. elongatum and the chromosomes controlling it have been identified in field studies employing Chinese Spring disomic substitution lines with individual L. elongatum chromosomes. In this paper the arm location of these genes was investigated by assessing K+/Na+ selectivity in lines harboring individual chromosomes and chromosome arms of L. elongatum. Lophopyrum elongatum chromosome arms 1ES, 7ES, and 7EL, were shown to enhance K+/Na+ selectivity in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Colmer, T.D., E. Epstein & J. Dvorak, 1995. Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat × Lophopyrum elongatum (Host) Love, A. amphiploid. Plant Physiology 108: 1715–1724.

    PubMed  CAS  Google Scholar 

  • Dvorak, J., 1979. Metaphase I pairing frequencies of individual Agropyron elongatum chromosome arms with Triticum chromosomes. Canadian Journal of Genetics and Cytology 21: 243–254.

    Google Scholar 

  • Dvorak, J., 1980. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Canadian Journal of Genetics and Cytology 22: 237–259.

    Google Scholar 

  • Dvorak, J. & K.C. Chen, 1984. Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Canadian Journal of Genetics and Cytology 26: 128–132.

    Google Scholar 

  • Dvorak, J., M. Edge & K. Ross, 1988. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proceedings of the National Academy of Sciences U.S.A. 85: 3805–3809.

    Article  CAS  Google Scholar 

  • Dvorak, J. & J. Gorham, 1992. Methodology of gene transfer by homoeologous recombination into Triticum turgidum: Transfer of K+/Na+ discrimination from T. aestivum. Genome 35: 639–646.

    Google Scholar 

  • Dvorak, J. & K. Ross, 1986. Expression of tolerance of Na+, K+, Mg2+, Cl-, and SO4 2− ions and seawater in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Science 26: 658–660.

    Article  CAS  Google Scholar 

  • Forster, B.P., T.E. Miller & C.N. Law, 1988. Salt tolerance of two wheat-Agropyron junceum disomic addition lines. Genome 30: 559–564.

    Google Scholar 

  • Galvez, A.F., P.J. Gulick & J. Dvorak, 1993. Characterization of the early stages of genetic salt stress responses in salt-tolerant L. elongatum, salt-sensitive wheat, and their amphiploid. Plant Physiology 103: 257–265.

    PubMed  CAS  Google Scholar 

  • Gorham, J., E. McDonnell, E. Budrewiezs & R.G. Wyn Jones, 1985a. Salt tolerance in the Triticeae: Growth and solute accumulation in leaves of Thinopyrum bessarabicum. Journal of Experimental Botany 36: 1021–1031.

    CAS  Google Scholar 

  • Gorham, J., R.G. Wyn Jones & E. McDonnell, 1985b. Some mechanisms of salt tolerance in crop plants. Plant and Soil 89: 15–40.

    Article  CAS  Google Scholar 

  • Omielan, J., E. Epstein & J. Dvorak, 1991. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34: 961–974.

    Google Scholar 

  • Palta, J.P., 1996. Role of Calcium in Plant Responses to Stresses — Linking Basic Research to the Solution of Practical Problems. Hortscience 31: 51–57.

    Google Scholar 

  • Rafi, M.M., E. Epstein & R.H. Falk, 1997. Sillicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). Journal of Plant Physiology 151: 497–501.

    CAS  Google Scholar 

  • Schachtman, D.P., A.J. Bloom & J. Dvorak, 1989. Salt-tolerant Triticum — Lophopyrum derivatives exclude sodium and chloride ions. Plant Cell and Environment 12: 47–55.

    Article  CAS  Google Scholar 

  • Schachtman, D.P. & R. Munns, 1992. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Australian Journal of Plant Physiology 19: 331–340.

    Article  CAS  Google Scholar 

  • Storey, R., R.D. Graham & K.W. Shepherd, 1985. Modification of the salinity response of wheat by the genome of Elytrigia elongatum. Plant and Soil 83: 327–330.

    Article  CAS  Google Scholar 

  • Tuleen, N.A. & G.E. Hart, 1988. Isolation and characterization of wheat — Elytrigia elongata chromosome 3E and 5E addition and substitution lines. Genome 30: 519–524.

    Google Scholar 

  • Zhong, G.Y. & J. Dvorak, 1995a. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in Lophopyrum elongatum and wheat, Triticum aestivum L., genomes. Theoretical and Applied Genetics 90: 229–236.

    Article  Google Scholar 

  • Zhong, G.Y. & J. Dvorak, 1995b. Evidence for common genetic mechanisms controlling the tolerance of sudden salt stress in the tribe Triticeae. Plant Breeding 114: 297–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deal, K., Goyal, S. & Dvorak, J. Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica 108, 193–198 (1999). https://doi.org/10.1023/A:1003685032674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003685032674

Navigation