Skip to main content
Log in

Dynamics of slip band formation in fcc alloys

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

The problems induced by the inhomogeneity of deformation of alloys with high solute concentration are discussed using experimental results on Cu-2...10% Ni and Cu-30% Zn single crystals. Combining microscopic observations (etch-pit/stress-pulse method) with mesoscopic studies (microcinematography of slip line formation) and with macroscopic measurements (stress relaxation) in terms of the effective activation volumes, it is inferred that theories on the motion of a dislocation across the obstacle field in the slip plane can be compared with microscopic (etch-pit) results, while the macroscopic deformation kinetics and the critical resolved shear stress in the yield region of inhomogeneously deformed alloys might rather be controlled by the transfer process of slip to neighbouring slip planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haasen P.:in Physical Metallurgy (eds. Cahn R. W., Haasen P.). North-Holland Publ. Comp., Amsterdam, 1983, p. 1341.

    Google Scholar 

  2. Suzuki H.:in Strength of Metals and Alloys (eds. McQueen H. J., Bailon J.-P., Dickson J. L., Jonas J. J., Akben M. G.). Pergamon, Toronto, 1986, p. 1727.

    Google Scholar 

  3. Nabarro F. R. N.: Philos. Mag.35 (1977) 613, B52 (1985) 785.

    Google Scholar 

  4. Schlipf J.: Phys. Status Solidi a74 (1982) 529.

    Google Scholar 

  5. Kocks U. F.: Metall. Trans. A16 (1985) 2109.

    Google Scholar 

  6. Schwink Ch.:in Proc. Colloq. Int. Mechanisms and Mechanics of Plasticity, Aussois 1987, to be published in Rev. Phys. Appl.

  7. Pande C. S., Hazzledine P. M.: Philos. Mag.24 (1971) 1029.

    Google Scholar 

  8. Swann P. R., Nutting J.: J. Inst. Met.90 (1961/62) 133.

    Google Scholar 

  9. Haasen P., King A.: Z. Metallk.51 (1960) 722.

    Google Scholar 

  10. Neuhäuser H., Arkan O. B., Potthoff H.-H.: Mater. Sci. & Eng.81 (1986) 201.

    Google Scholar 

  11. Schwink Ch., Wille Th.: Scr. Metall.14 (1980) 1093;

    Google Scholar 

  12. Steffens Th., Schwink Ch.: Acta Metall.31 (1983) 2013.

    Google Scholar 

  13. Arkan O. B., Neuhäuser H.: Phys. Status Solidi a99 (1987) 385;100 (1987) 441.

    Google Scholar 

  14. Traub H., Neuhäuser H., Schwink Ch.: Acta Metall.25 (1977) 437, 1289.

    Google Scholar 

  15. Bengus V. Z.: Crystal Res. & Techn.19 (1984) 757.

    Google Scholar 

  16. Neuhäuser H., Fiebiger H., Himstedt N.:in Strength of Metals and Alloys (eds. Haasen P., Gerold V., Kostorz G.). Pergamon, Toronto, 1979, p. 1395.

    Google Scholar 

  17. Flor H., Neuhäuser H.: Res. Mech.5 (1982) 101; Scr. Metall.13 (1979) 1147.

    Google Scholar 

  18. Hampel A., Neuhäuser H.: Phys. Status Solidi a, to be published.

  19. Kocks U. F., Argon A. S., Ashby M. F.: Prog. Mater. Sci.19 (1975) 1.

    Google Scholar 

  20. Schoeck G.:in Dislocations in Solids, Vol. 3 (ed. Nabarro F. R. N.). North-Holland Publ. Comp., Amsterdam, 1980, p. 63.

    Google Scholar 

  21. Neuhäuser H., Koropp J., Heege R.: Acta Metall.33 (1975) 441.

    Google Scholar 

  22. Nakajima K.: J. Phys. Soc. Jap.14 (1959) 1825.

    Google Scholar 

  23. Carter C. B., Ray I. L. F.: Philos. Mag.35 (1977) 189.

    Google Scholar 

  24. Suzuki T., Ishii T.: Techn. Rep. ISSP Ser. A No 283 (1967).

  25. Kleintges M., Haasen P.: Scr. Metall.14 (1980) 993.

    Google Scholar 

  26. Arsenault R. S.: Philos. Mag.24 (1971) 259.

    Google Scholar 

  27. Neuhäuser H., Flor H.: Scr. Metall.12 (1978) 441;

    Google Scholar 

  28. Neuhäuser H., Flor H.: Acta Metall.28 (1980) 934;

    Google Scholar 

  29. Schwarz R. B.: Scr. Metall.16 (1982) 385.

    Google Scholar 

  30. Wielke B.: Z. Metallk.68 (1977) 199.

    Google Scholar 

  31. Labusch R.: Verh. Dtsch. Phys. Ges. (VI)21 (1986) 1323; Czech. J. Phys. B38 (1988) 474.

    Google Scholar 

  32. Bengus V. Z., Kovalenko T. P.: Phys. Status Solidi a44 (1977) 457.

    Google Scholar 

  33. Seeger A., Berner R., Wolf H.: Z. Phys.155 (1959) 247.

    Google Scholar 

  34. Escaig B.:in Dislocation Dynamics (eds. Rosenfield A. R., Hahn G. T., Bement Jr. A. L., Jaffee R. I.). McGraw-Hill, New York, 1968, p. 655.

    Google Scholar 

  35. Nakada Y., Tisone T. C.:in Proc. 2 Int. Conf. Strength of Metals and Alloys, Am. Soc. Metals, 1970, p. 288.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fruitful discussions with Prof. Ch. Schwink and Dipl.-Phys. A. Hampel, as well as the continuous financial supports by the Deutsche Forschungsgemeinschaft, now in project A9 of SFB 319 are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhäuser, H., Arkan, O.B. & Flor, H. Dynamics of slip band formation in fcc alloys. Czech J Phys 38, 511–518 (1988). https://doi.org/10.1007/BF01597466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01597466

Keywords

Navigation