Skip to main content
Log in

HMDC crosslinking of bovine pericardial tissue: a potential role of the solvent environment in the design of bioprosthetic materials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The need for alternative crosslinking techniques in the processing of bioprosthetic materials is widely recognized. While glutaraldehyde remains the most commonly used crosslinking agent in biomaterial applications there is increasing concern as to its biocompatibility-principally due to its association with enhanced calcification, cytotoxicity, and undesirable changes in the mechanical properties of bioprosthetic materials. Hexamethylene diisocyanate (HMDC), like glutaraldehyde, is a bifunctional molecule which covalently bonds with amino groups of lysine residues to form covalent crosslinks. Evidence within the literature indicates HMDC-treated materials are less cytotoxic than glutaraldehyde-treated materials; however, there is limited characterization of the material properties of HMDC-treated tissue. This study uses a multi-disciplined approach to characterize the mechanical, thermal, and biochemical properties of HMDC-treated bovine pericardial tissue. Further, to facilitate stabilization of the HMDC reagent, non-aqueous solvent environments were investigated. HMDC treatment produced changes in mechanical properties, denaturation temperature, and enzymatic resistance consistent with crosslinking similar to that seen in glutaraldehyde treated tissue. The significantly lower extensibility and stiffness observed under low stresses may be attributed to the effect of the 2-propanol solvent environment during crosslinking. While the overall acceptability of HMDC as a crosslinking agent for biomaterial applications remains unclear, it appears to be an interesting alternative to glutaraldehyde with many similar features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. T. CHEUNG, D. TONG, N. PERELMAN, D. ERTL and M. E. NIMNI, Conn. Tiss. Res. 25 (1990) 27–34.

    Google Scholar 

  2. M. E. NIMNI, D. T. CHEUNG, B. STRATES, M. KODAMA and K. SHEILCH, J. Biomed. Mater. Res. 21 (1987) 741–771.

    Google Scholar 

  3. A. M. GATTI, M. GALLONI, E. MONARI, G. NOERA, E. PASQUINO and F. VALLANA, Int. J. Artif. Organs 14 (1991) 647–654.

    Google Scholar 

  4. G. GOLOMB, F. J. SCHOEN, M. S. SMITH, J. LINDEN, M. DIXON and R. J. LEVY, Amer. J. Pathol. 127 (1987) 122–130.

    Google Scholar 

  5. L. L. H. HUANG-LEE, D. T. CHEUNG and M. E. NIMNI, J. Biomed. Mater. Res. 24 (1990) 1185–1201.

    Google Scholar 

  6. P. ZIOUPOS, J. C. BARBENEL, J. FISHER and D. J. WHEATLEY J. Mat. Sci. Mater. Med. 4 (1993) 531–537.

    Google Scholar 

  7. G. M. BRAUER and C. H. LEE, J. Biomed. Mater. Res. 23 (1989) 753–763.

    Google Scholar 

  8. L. OLDE DAMINK, PhD thesis, University of Twente (1993) pp. 55–65.

  9. M. CHVAPIL, D. SPEER, W. MORA, and C. ESKELSON, J. Surgical Res. 35 (1983) 402–409.

    Google Scholar 

  10. P. B. Van WACHEM, M. J. A. VAN LUYN, H. K. KOERTEN, P. NIEWENHUIS, L. OLDE DAMINK, H. TEN HOOPEN and P. FEIJEN, Biomaterials 12 (1991) 215–223.

    Google Scholar 

  11. P. B. Van WACHEM, M. J. A. VAN LUYN, L. OLDE DAMINK, H. K. KOERTEN, H. TEN HOOPEN, J. FEIJEN and P. NIEUWENHUIS, Cells and Materials 1 (1991) 1–7.

    Google Scholar 

  12. M. J. A. VAN LUYN, P. B. VAN WACHEM, L. OLDE DAMINK, P. J. DIJKSTRA, J. FEIJEN and P. NIEWENHUIS, Biomaterials 13 (1992) 1017–1024.

    Google Scholar 

  13. M. J. A. Van LUYN, P. B. VAN WACHEM, L. OLDE DAMINK, P. J. DIJKSTRA, J. FEIJEN and P. NIEWENHUIS, J. Biomed. Mater. Res. 26 (1992) 1091–1110.

    Google Scholar 

  14. P. B. Van WACHEM, M. J. A. VAN LUYN, L. OLDE DAMINK, P. J. DIJKSTRA, J. FEIJEN and P. NIEWENHUIS, J. Biomed. Mater. Res. 28 (1994) 353–363.

    Google Scholar 

  15. K. MARTINEK, A. V. LEVASHOV, N. KLYACHKO, Y. L. KHMELNITSKI and I. V. BEREZIN, Eur. J. Biochem. 155 (1986) 453–468.

    Google Scholar 

  16. S. M. KRASOVSKAYA, L. D. UZHINOVA, M. Y. ANDRIANOVA, A. A. PRISCHENKO, M. V. LIVANTSOV and M. V. LOMONSOV, Biomaterials 12 (1991) 817–820.

    Google Scholar 

  17. J. M. LEE, C. A. PEREIRA, D. A. ABDULLA, W. A. NAIMARK and I. Crawford, Med. Eng. Phys. (in press).

  18. J. M. NAIMARK, J. M. LEE, H. LIMEBACK and D. T. CHEUNG, Amer. J. Physiol. 263 (1992) H1095–1106.

    Google Scholar 

  19. J. M. LEE, S. A. HABERER and D. R. BOUGHNER, J. Biomed. Mater. Res. 23 (1989) 457–475.

    Google Scholar 

  20. E. A. TROWBRIDGE and C. E. CROFTS, Biomaterials 7 (1986) 49–54.

    Google Scholar 

  21. C. A. PEREIRA, J. M. LEE and S. A. HABERER, J. Biomed. Mater. Res. 24 (1990) 345–361.

    Google Scholar 

  22. K. BRENDEL, R. C. DUHAMEL, J. M. MALONE et al., in “Vascular graft update: safety and performance” ASTM special Publication 898, Philadelphia, 1986, edited by H. E. Kambic, A. Kantrowitz and P. Sung, pp. 219–235.

  23. G. J. WILSON, H. YEGER, P. KLEMENT, J. M. LEE and D. W. COURTMAN, Trans. Amer. Soc. Artif. Int. Organs 36 (1990) M340-M343.

    Google Scholar 

  24. K. H. GUSTAVSON, in “The chemistry and reactivity of collagen” Academic Press, New York, 1956 pp. 230–242.

    Google Scholar 

  25. K. WEADOCK, R. M. OLSEN and F. H. SILVER, Biomater. Med. Dev. Artif. Org. 11 (1983–4) 293–318.

    Google Scholar 

  26. K. BURGER and B. NOSNAL, in “Advances in solution chemistry” (Plenum Press, New York, 1981) pp. 139–148.

    Google Scholar 

  27. J. M. LEE, D. R. BOUGHNER and D. W. COURTMAN, J. Biomed. Mater. Res. 18 (1984) 79–98.

    Google Scholar 

  28. K. MOHANARADKRISHNAN and N. Ramanthan, Leather Sci. 12 (1965) 12–20.

    Google Scholar 

  29. M. BERODE, B. TESTA and H. SAVOLAINEN, Toxicology Lett. 56 (1991) 173–178.

    Google Scholar 

  30. H. F. MARK, Ð. F. OTHMER, C. G. OVERBERGER and G. T. SEABORG, in: “Kirk-Othmer encyclopedia of chemical technology” (John Wiley, New York, 1981) 13: 789–818.

    Google Scholar 

  31. E. A. TROWBRIDGE and C. E. CROFTS, J. Biomech. 19 (1986) 1023–1033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naimark, W.A., Pereira, C.A., Tsang, K. et al. HMDC crosslinking of bovine pericardial tissue: a potential role of the solvent environment in the design of bioprosthetic materials. J Mater Sci: Mater Med 6, 235–241 (1995). https://doi.org/10.1007/BF00146862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146862

Keywords

Navigation