Skip to main content
Log in

A viscoelastic shear zone model of compressional and extensional plate boundaries

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A model is proposed describing the mechanical evolution of a shear zone along compressional and extensional plate boundaries, subject to constant strain rate. The shear zones are assumed as viscoelastic with Maxwell rheology and with elastic and rheological parameters depending on temperature and petrology. Stress and strain are computed as functions of time and depth. For both kinds of boundaries the model reproduces the existence of a shallow seismogenic zone, characterized by a stress concentration. The thickness of the seismogenic layer is evaluated considering the variations of shear stress and frictional strength on faults embedded in the shear zone. Assuming that a fault dislocation takes place, the brittle-ductile transition is assumed to occur at the depth at which the time derivative of total shear stress changes from positive to negative values. The effects of different strain rates and geothermal gradients on the depth of the brittle-ductile transition are studied. The model predictions are consistent with values inferred from seismicity data of different boundary zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. M.,The Dynamics of Faulting. Second ed. (Olivier and Boyd, Edinburg 1951).

    Google Scholar 

  • Armbruster, J., Seeber, L., andJacob, K. H. (1978),The Northwestern Termination of the Himalayan Mountain Front: Active Tectonics from Microearthquakes. J. Geophys. Res.83, 269–282.

    Google Scholar 

  • Bird, P., Toksöz, M. N., andSleep, N. H. (1975),Thermal and Mechanical Models of Continent-continent Convergence zones. J. Geophys. Res.80, 4405–4413.

    Google Scholar 

  • Benz, H. M., Smith, R. B., andMooney, W. D. (1990),Crustal Structure of the Northwestern Basin and Range Province from the 1986 Program for Array Seismic Studies of the Continental Lithosphere Seismic Experiment, J. Geophys. Res.95, 21823–21842.

    Google Scholar 

  • Boland, J. N., andTullis, T. E.,Deformation behaviour of wet and dry clinopyroxenite in the brittle to ductile transition region. InMineral and Rock Deformation: Laboratory Studies (eds. Hobbs, B. E., and Heard, H. D.) The Paterson Volume, Geophys. Monograph. Ser. 36 (Amer. Geophys. Union, Washington, D.C. 1986) pp. 35–49.

    Google Scholar 

  • Carmichael, R. S.,Handbook of Physcial Properties of Rocks (CSC Editions, vol. 3, 1984) pp. 340.

    Google Scholar 

  • Cêrmàk, V.,Heat flow map in Europe. InTerrestrial Heat Flow in Europe (eds. Cêrmàk, V., and Rybach, L.), (Springer-Verlag, Berlin 1979).

    Google Scholar 

  • Chapman, D. S., andPollack, H. N. (1977),Heat Flow and Heat Production in Zambia: Evidence for Lithospheric Thinning in Central Africa. Tectonophysics41, 79–100.

    Google Scholar 

  • Chen, W. P., andMolnar, P. (1981),Constraints on the Seismic Wave Velocity Structure beneath the Tibetan Plateau and their Tectonic Implications, J. Geophys. Res.86, 5937–5962.

    Google Scholar 

  • Chen, W. P., andMolnar, P. (1983),Focal Depth of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.

    Google Scholar 

  • Christensen, R. M.,Theory of Viscoelasticity: An Introduction (Academic Press, New York 1971) 245 pp.

    Google Scholar 

  • Cipar, J. (1980),Teleseismic Observations of the 1976 Friuli, Italy, Earthquake Sequence, Bull. Seismol. Soc. Am.70, 963–983.

    Google Scholar 

  • Doser, D. I., andKanamori, H. (1986),Depth of Seismicity in the Imperial Valley Region (1977–1983) and its Relationship to Heat Flow, Crustal Structure and the October 15, 1979, Earthquake, J. Geophys. Res.91, 675–688.

    Google Scholar 

  • Dragoni, M. (1988),A Model of Interseismic Stress Evolution in a Transcurrent Shear Zone, Tectonophysics149, 265–273.

    Google Scholar 

  • Dragoni, M. (1980),Stress Relaxation at the Lower Dislocation Edge of Great Shallow Earthquakes, Tectonophysics179, 113–119.

    Google Scholar 

  • Dragoni, M., Bonafede, M. andBoschi, E. (1986),Shallow Earthquakes in a Viscoelastic Shear Zone with Depth-dependent Friction and Rheology, Geophys. J. R. Astr. Soc.86, 617–633.

    Google Scholar 

  • Dragoni, M., andPondrelli, S. (1991),Depth of the Brittle-ductile Transition in a Transcurrent Boundary Zone, Pure and Appl. Geophys.135, 447–461.

    Google Scholar 

  • Francheteau, J., Jaupart, C., Shen, X. J., Kang, W. H., Lee, D. L., Bai, J. C., Wei, H. P., andDeng, H. Y. (1984),High Heat Flow in Southern Tibet, Nature307, 32–36.

    Google Scholar 

  • Fuchs, K., Boujer, K. P., andProdehl, C. (1981),The Continental Rift System of the Rhinegrabenstructure, Physical Properties and Dynamical Processes Tectonophysics73, 79–90.

    Google Scholar 

  • Fung, Y. C.,Foundations of Solid Mechanics, (Prentica Hall, Englewood Cliffs, New Jersey 1965).

    Google Scholar 

  • Hansen, F. D., andCarter, N. L. (1982),Creep of Selected Crustal Rocks at 1000 MPa, EOS Trans. Am. Geophys. Un.63, 437.

    Google Scholar 

  • Jackson, J. andFitch, T. (1981),Basement Faulting and the Focal Depths of the Larger Earthquakes in the Zagros Mountain (Iran) Geophys. J. R. Astr. Soc.,64, 561–586.

    Google Scholar 

  • Jaoul, O., Tullis, J., andKronenberg, A. (1984),The Effect of Varying Water Content on the Creep Behavior of Heavitree Quartzite, J. Geophys. Res.89, 4298–4312.

    Google Scholar 

  • Kirby, S. H., andKronenberg, A. K. (1984),Deformation of Clinopyroxenite: Evidence for a Transition in Flow Mechanisms and Semibrittle Behavior, J. Geophys. Res.89, 3177–3192.

    Google Scholar 

  • Kirby, S. H., andKronenberg, A. K. (1987),Rheology of the Lithosphere: Selected Topics, Rev. Geophys.25, 1219–1244.

    Google Scholar 

  • Kusznir, N. J., andPark, R. G. (1984),Intraplate Lithosphere Deformation and the Strength of the Lithosphere, Geophys. J. R. Astr. Soc.79, 513–538.

    Google Scholar 

  • Mahrer, K. D., andNur, A. (1979),Strike-slip Faulting in a Downward Varying Crust, J. Geophys. Res.84, 2296–2302.

    Google Scholar 

  • Mao, W. J., andSuhadolc, P. (1987),L'area sismica del Friuli: inversione dei tempi di arrivo per un modello di velocità e modellazione di forme d'onda accelerometriche, Atti del 6° convegno del G.N.G.T.S., C.N.R., Roma1, 451–460.

    Google Scholar 

  • Meissner, R., andStrehlau, J. (1982),Limits of Stresses in Continental Crusts and their Relations to the Depth-frequency Distribution of Shallow Earthquakes, Tectonics1, 73–89.

    Google Scholar 

  • Molnar, P., andChen, W. P. (1983),Focal Depths and Fault Plane Solutions of Earthquakes under the Tibetan Plateau, J. Geophys. Res.88, 1180–1196.

    Google Scholar 

  • Peltier, W. R., Wu, P., andYuen, D. A.,The viscosities of the earth's mantle. InAnelasticity in the Earth (eds. Stacey, F. D., Paterson, M. S., and Nicholas, A.) Geodynamics Series, Vol. 4 (American Geophysical Union, Washington, D.C. 1981) pp. 59–77.

    Google Scholar 

  • Prescott, W. H., andNur, A. (1981).The Accommodation of Relative Motion at Depth on the San Andreas Fault System in California, J. Geophys. Res.86, 999–1004.

    Google Scholar 

  • Shelton, G., andTullis, J. A. (1981),Experimental Flow Laws for Crustal Rocks, EOS Trans. Am. Geophys. Un.62, 396.

    Google Scholar 

  • Sibson, R. H. (1974),Frictional Constraints on Thrust, Wrench and Normal Faults, Nature249, 542–544.

    Google Scholar 

  • Smith, R. B., andBruhn, R. L. (1984),Intraplate Extensional Tectonics of the Eastern Basin-range: Inferences on Structural Style from Seismic Reflection Data, Regional Tectonics and Thermal-mechanical Models of Brittle-ductile Deformation, J. Geophys. Res.89, 5733–5762.

    Google Scholar 

  • Turcotte, D. L., andSpence, D. A. (1974),An Analysis of Strain Accumulation on a Strike-slip Fault, J. Geophys. Res.79, 4407–4412.

    Google Scholar 

  • Turcotte, D. L., andSchubert, G.,Geodynamics. Application of Continuum Physics to Geological Problems (John Wiley and Sons, New York 1982) 450 pp.

    Google Scholar 

  • Vitorello, I., Hamza, V. M., andPollack, H. N. (1980),Terrestrial Heat Flow in the Brazilian Highlands, J. Geophys. Res.85, 3778–3788.

    Google Scholar 

  • Westaway, R. (1990),Seismicity and Tectonic Deformation Rate in Soviet Armenia: Implications for Local Earthquake Hazard and Evolution of Adjacent Region, Tectonics9, 477–503.

    Google Scholar 

  • Yuen, D. A., Fleitout, L., Schubert, G., andFroidevaux, C. (1978),Shear Deformation Zones along Major Transform Faults and Subducting Slabs, Geophys. J. R. Astr. Soc.54, 93–120.

    Google Scholar 

  • Yund, R. A., Blanpied, M. L., Tullis, T. E., andWeeks, J. D. (1990),Amorphous Material in High Strain Experimental Fault Gouge, J. Geophys. Res.95, 15589–15602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragoni, M., Santini, S. & Tallarico, A. A viscoelastic shear zone model of compressional and extensional plate boundaries. PAGEOPH 140, 471–491 (1993). https://doi.org/10.1007/BF00876966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876966

Key Words

Navigation