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Abstract

Several studies have investigated changes in microbial community composition in thawing permafrost landscapes, but microbial
assemblages in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw
features, are widespread along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise.
This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst
lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the
uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those
deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake
communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments.
This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not only substantially alter

microbial communities but also that this transition has a larger effect than permafrost thaw and lake formation history.
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Introduction

Global climate warming is accelerating permafrost degradation.
Gradual degradation is manifested by top-down permafrost thaw-
ing and thickening of the active layer. Thermokarst processes lead
to rapid and deep thawing of permafrost and the development
of thermokarst ponds and lakes, which is extremely common in
ice- and organic-rich permafrost (Grosse et al. 2013, Olefeldt et al.
2016, Strauss et al. 2017). In Alaska, for example, thermokarst
lakes have doubled in number and increased approximately by
37.5% in area from 1949 to 2009 (Walter Anthony et al. 2021).
Thermokarst lakes in Siberian ice-rich permafrost have generally
developed since the early Holocene (Jongejans et al. 2020). Arc-
tic thermokarst lakes contribute to ~80% of Arctic contemporary
CH,4 hotspot emissions and generally release large amounts of
methane relative to CO,, and thus have a disproportionately high
climate effect (Walter Anthony et al. 2018, 2021, Knoblauch et al.
2018).

Coastal erosion in the pan-Arctic can establish periodical or
perennial connection of thermokarst lakes to the sea, which
converts these lakes to lagoons. Thermokarst lagoons were es-
timated to account for 54% of the estimated total of ~470 la-

goons, which were identified along the Arctic coastline by re-
mote sensing as of 2021 (Angelopoulos et al. 2021, Jenrich et al.
2021). Thermokarst lagoons represent a transitional state between
freshwater thermokarst lakes and a fully marine environment.
In these coastal lagoons, the hydrological connection to the sea
plays a crucial role in facilitating the exchange of abiotic and
biotic conditions between the two ecosystems (Gianuca et al.
2017). Vertical diffusion of marine water generates a sulfate-rich
saline gradient on the top part of previous freshwater sediments
(Schindler 2019). Along with the transition, microbial methane
cycling community changes, for example, can influence carbon
turnover and greenhouse gas emission (Yang et al. 2023). In an
earlier study, we showed that within the sulfate zone, spatial co-
occurrence of methane and sulfate thermodynamically favours
sulfate-dependent anaerobic oxidation of methane, which miti-
gates methane emissions from thermokarst lagoons (Yang et al.
2023).

Thermokarst lakes and lagoons can serve as a natural labora-
tory to disentangle the mechanisms of microbial species replace-
ment and evaluate the environmental controls on microbial com-
munity assemblage in rapidly degrading permafrost landscapes.
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Permafrost usually limits dispersal of species due to its frozen
state (Bottos et al. 2018), while thawing will alleviate the disper-
sal constraints on microbes. The lateral and vertical expansion
of thermokarst lakes presumably reworks the sediments to more
homogeneous conditions than the previously frozen ground. The
infiltration of saline marine water into the thawed sediment will
not only rework the geochemical profile in the lake, but also intro-
duce marine microbes to the newly formed lagoon ecosystems.
Subsea permafrost was found to contain an enormous amount
of organic carbon (Miesner et al. 2023) originating from onshore
terrestrial permafrost, where microbial dynamics were found to
be linked with changes of geochemical conditions along the sed-
imentation history (Mitzscherling et al. 2019). However, little is
known about the changes of microbial structure and interspecies
connection during the transition from thermokarst lakes to
lagoons.

This study investigates how microbial communities, beyond
those involved in methane cycling, shift along the transition from
coastal thermokarst lakes to thermokarst lagoons in the Arctic.
We presume that the restratification of geochemical profiles fol-
lowing thermokarst lake to lagoon transitions result in restructur-
ing and convergence of the core consortia and address how mi-
crobial communities respond to the diverging geochemical con-
ditions between thermokarst lakes and lagoons. We studied sedi-
ments of two thermokarst lakes and a lagoon from the Bykovsky
Peninsula in northeastern Siberia where lagoons are extensively
distributed and many thermokarst lagoons started to emerge
about 2 ka before present (BP) (Jongejans et al. 2020) utilizing
deep amplicon sequencing, and multiple numeric ecological ap-
proaches.

Material and methods

Study site and sampling

Sediment cores of three thermokarst bodies were retrieved on the
Bykovsky Peninsula in the Laptev Sea, northeastern Siberian per-
mafrost region. Lake Golzovoye (LG) and Northern Polar Fox Lake
(LNPF) are freshwater thermokarst lakes while Polar Fox Lagoon
(PFL) is a thermokarst lagoon to the south of LNPF (Fig. 1). Details
about the three research sites can be found in Yang et al. (2023).
Paleoclimatic proxies suggested thermokarst erosion to LG and
LNPF since 8 cal ka BP and lagoon formation of PFL started about
2 cal ka BP (Jongejans et al. 2020). The PFL has more dynamic en-
vironmental conditions because of seasonal hydrological connec-
tion to Tiksi Bay, which is broken by ice in winter (Schirrmeister
et al. 2018, Jenrich et al. 2021), while the thermokarst lakes main-
tain generally stable freshwater conditions.

Sampling and subsampling were performed during a field ex-
pedition in April 2017. Three cores (PG2420, PG2426, and PG2423)
were retrieved for a total length of 5.2 m, 5.4 m, and 6.1 m, respec-
tively, from sediments of lake LG, LNPF, and PFL, using an UWITEC
piston corer. Subsequently, based on the specific research objec-
tives of different participants during the joint field campaign, the
core segments were either stored in N,-flushed, vacuum sealed
bags at ~4°C for pore-water analysis or sediment plugs were taken
with sterile syringes directly in the field and subsequently frozen
until further processing. The cores for microbial studies were di-
vided into 49 samples, representing various depths in the sedi-
ment cores: 13 samples were retrieved from lake LG, 17 from LNPF,
and 19 from PFL. In our recent study (Yang et al. 2023), we analyzed
a subset of 23, which encompassed complete dataset of both geo-
chemical and microbial information. In the current study, all the

49 microbial samples were used, independent of completeness of
geochemical data, in order to obtain comprehensive information
about microbial composition.

Bulk parameters and pore water chemistry

Briefly, total carbon , total organic carbon, and total nitrogen were
measured on bulk material using Elementar Micro Vario elemen-
tal analyzer (Elementar Analysensysteme, Hanau, Germany). The
porewater was drained into a vacuum syringe in an anaerobic
glove box (N;:Hy, 95%:5%). The corresponding analyses included
alkalinity, sulfate, chloride, nitrate, ferric, and ferrous iron. Alka-
linity was measured by colorimetric titration, cations and anions
were measured with suppressed ion chromatography, while the
dissolved iron (ferric and ferrous) concentrations in pore water
were measured via spectrophotometry by the ferrozine method
(Viollier et al. 2000). All samples were measured in triplicates, the
geochemical data together with detailed method description have
been deposited at GFZ Data Services (https://doi.org/10.5880/GFZ.
3.7.2022.001).

DNA extraction and libraries preparation for
Illumina sequencing

Total nucleic acids were extracted in duplicates using the
PowerSoil-Kit (MO-Bio) according to the manufacturer’s proto-
col. Amplicon libraries were prepared by using barcoded primer
pair sets (Uni515-F[5'-GTGTGYCAGCMGCCGCGGTAA-3']/Uni806-
R[5'-CCGGACTACNVGGGTWTCTAAT-3']), with duplicates for each
sample. PCRreactions (50 ul) contained 10x Pol Buffer C (Roboklon
GmbH, Berlin, Germany), 25 mM MgCl,, 0.2 mM dNTP mix (Ther-
moFisher Scientific), 0.5 mM each primer (TIB Molbiol, Berlin, Ger-
many), and 1.25 U of Optitaq Polymerase (Roboklon, Germany).
The PCR program included an initial denaturation step at 95°C
for 7 min, followed by 33 cycles at 95°C for 15 s, annealing at 60°C
for 30 s, extension at 72°C for 30 s and a final extension step at
72°C for 5 min. After purification with the Agencourt AMPure XP
kit (Beckman Coulter, Switzerland), the recovered PCR products
were equilibrated into comparable equal amounts before pooling
together with positive and negative controls. For the positive con-
trols, we utilized a commercially available mock community (Zy-
moBIOMICS Microbial Community DNA Standard II). As for the
negative controls, they consisted of the DNA extraction buffer
and the PCR buffer. Sequencing was run in paired-end mode (2
x 300 bp) on llumina MiSeq platform by Eurofins Scientific (Kon-
stanz, Germany).

Data processing, numeric, and statistical analysis

Raw sequences were demultiplexed by a custom Python script
which used the ‘make.contigs’ function (pdiff=2, bdiff=1, other
settings by default) in Mothur (v.1.39.5) (Schloss et al. 2009) to
generate report files, upon which the raw sequences were de-
multiplexed into individual samples. After orientation correc-
tion with ‘extract_barcodes.py’ in QIIME1 (Caporaso et al. 2010),
the sequences were processed by DADA2 (maxN=0, maxEE=2,
truncQ=2, and minLen=175) and the output was reported in the
format of an amplicon sequence variant (ASV) table (Callahan
et al. 2016). The taxonomy was assigned against the SILVA138
database (Quast et al. 2013). Negative controls were employed to
assess the contamination during DNA extraction and PCR pro-
cesses, positive controls ensured that the sequencing itself did
not introduce noticeable errors. Moreover, the sequencing du-
plicates demonstrated high consistency (Figure S1, Supporting
Information). The contribution of different community members
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Figure 1. Maps of the study site showing (A) location with respect to the Northern Hemisphere and permafrost extent regions (B) location with respect
to the Bykovsky Peninsula, and (C) relative location of the lakes and the lagoon (modified from Yang et al. 2023).

to the total abundance and beta diversity (Bray—Curtis dissimilar-
ity, BC) was summarized by using R package otuSummary (version
0.1.1) (Yang 2020). The data obtained from each of the 49 samples,
including their respective duplicates, were combined. The very
rare ASVs with a cumulative count less than 10 across all sam-
ples were removed, resulting in the retention of a total of 25880
ASVs. The microbial community dissimilarity was explored by
nonmetric multidimensional scaling (NMDS) by using R package
vegan (version 2.5.7) (Oksanen et al. 2019) based on the BC dissim-
ilarity from Hellinger transformed data to mitigate the excessive
effect of rare taxa. Following the clustering in NMDs, a hierarchi-
cal clustering (Figure S2, Supporting Information) was performed
to identify the grouping feature of samples by R base package (R
Core Team 2014). With that, permutational MANOVA was com-
pleted by ‘adonis2’ function of vegan package with BC matrix. To
detect taxa, which were significantly enriched in the freshwater-
and marine water-influenced sediments, linear discriminant anal-
ysis (LDA) effect size (LEfSe) was performed by using R package
microbiomeMarker (v1.1.2), based on normalized data by using a
negative binomial model (Cao 2021).

To detect associations between microorganisms from
thermokarst lakes and lagoon, network analysis was imple-
mented to explore the taxon co-occurrence patterns and the
niche spaces. An initial filtering removed poorly represented
ASVs with mean relative abundance < 0.5% from the whole
community dataset, followed by a secondary filtering to get those
ASV lineages with the Spearman correlation coefficient (absolute
value > 0.75) and P-value (< .01). Afterwards, a network object
was generated and analyzed by R package igraph (version 1.2.10)
(Csardi and Nepusz 2006). Community modules of the network
were detected with the ‘cluster_edge_betweenness’ algorithm
of igraph package. The final network contained 194 ASVs. Based
on the membership affiliation of each node (which represents
individual ASVs), an NMDs plot was generated to explore the
preferential occurrence of module members (ASVs) over different
samples. A nonparametric Welch t-statistic was used to test
the separation of each module over different groups with base
package in R. In addition, the one-dimensional diagram was used

to display the representative of individual modules over samples
by using the function ‘linestack’ from vegan package.

Results
Environmental features

Exploratory ordination analysis on environmental variables,
which were based on the porewater geochemistry and C, N con-
tent of bulk sediments, suggested that the marine water influ-
enced samples, which were entirely composed of the uppermost
3 m sediments of PFL clustered away from the fresh water sed-
iments (Figure S3, Supporting Information). The marine cluster
were characterized by high levels of sulfate, salinity, and alkalinity,
with highly enriched §°C of methane (—54%¢~—37%o) in contrast
to the depletion (—90%c~—75%0) of freshwater sediment samples.
The marine influence, thus, had a larger effect than that of the
location.

Community composition

The most abundant ASV lineage was Caldatribacteriota JS1, with
a relative abundance of 9.7 + 8.7% (mean =+ SD) across all 49 sam-
ples. The predominant archaeal lineage (4.3 + 3.7%) was affiliated
to Bathyarchaeia within the phylum Crenarchaeota. At phylum
level, a total of 14 taxonomic groups were identified with mean
relative abundance > 1%, including 12 bacterial, and two archaeal
phyla, which collectively account for 90% of the total abundance.
Chloroflexota was the most abundant phylum (19.7 + 8.5%), fol-
lowed by Caldatribacteriota (former OP9, also known as Atribac-
teroita, 11.7 + 8.3%) and Planctomycetota (11.3 &+ 5.5%) (Fig. 2).
The abundant archaeal phyla included Crenarchaeota (4.7 £ 3.7%)
and Thermoplasmatota (2.5 & 2.1%). Compositional variation over
samples were displayed in detail at family level (Fig. 3), which also
highlighted the distinct feature of the upper sediments of PFL.
Collectively, the 14 predominant phyla account for an average
of 74% (first quantile: 66.2%, median: 75.1%, third quantile: 85.2%)
to the total BC dissimilarity. The NMDs suggested two separate
clusters of microbial communities, with one cluster consisting of
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Figure 2. The abundance of dominant phyla with mean relative abundance greater than 1% over all samples. The 14 abundant phyla account for 90%

of the total abundance. The y-axes in the left and right denote the scales for t
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Figure 3. Bubble plot showing abundance variation of the 45 abundant lineages (with mean relative abundance > 0.35%) over depths for the three
thermokarst lakes (LG: Lake Golzovoye, LNPF: Northern Polar Fox Lake, and PFL: Polar Fox Lagoon) in this study. Along the vertical axis, the taxonomy

was presented at the family rank, and if assigning to the family level was not

feasible, the next available higher taxonomic level was utilized. The

relative abundance was calculated by combining the archaeal and bacterial ASVs and then collapsed at family level for this plot. The bubble colours
correspond to different phyla, while the size of the bubbles reflects the average relative abundance.

samples from the brackish layer of PFL influenced by marine wa-
ter (until the sample PFL_220 retrieved at depth of 220 cm), while
the second cluster encompassed samples from freshwater sedi-
ments (Figure S3, Supporting Information). Interestingly, this pat-
tern aligns closely with the two clusters observed in the environ-
mental ordination, which correspond to sediments influenced by

freshwater and brackish water, respectively (Figure S3, Supporting
Information). The freshwater- and saltwater-influenced microbial
clusters were statistically different (P < .001) according to adonis-
based nonparametric MANOVA.

In the freshwater-influenced samples, a total of 8 character-
istic taxa were observed with mean relative abundance > 2%,
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including Sva0485, Planctomycetota (AKAU3564 sediment group,
SG8-4), Chloroflexota (e.g. GIF9, SCGC—AB—539-]10), Actinomyce-
tota (WCHB1-81), Acidobacteriota (Aminicenantales), and Bath-
yarchaeia. These characteristic lineages occurred across most of
the freshwater-influenced samples and their relative abundances
are significantly higher than the marine-water influenced group.
In contrast, the lagoon subgroup was represented by Anaerolin-
eaceae (Chloroflexota), Sporosarcina, and Clostridium sensu stricto
13 (Bacillota, also known as Firmicutes). Additionally, lineages
from Caldatribacteriota JS1 were abundant in both habitat groups.
ANME-2a-2b was not highlighted as a characteristic lineage of the
marine-water group as they largely prevailed only at the upper
two layers among the total eight marine-water-influenced group,
despite of their very high abundance in two sulfate-rich depths of
lagoon sediments.

Microbial co-occurrence and the environmental
drivers

The network constituted 194 ASVs (diameter: 11.01673, mean dis-
tance: 4.688331, and average clustering coefficient transitivity is
0.765) with 912 edges, which show almost entirely positive asso-
ciation except for one negative interaction between ASV4 (Chlo-
roflexota; GIF9) and ASV_193 (Actinomycetota; Cryobacterium).
The network suggests nine nonrandom modules (modularity
0.5635) (Fig. 4). In this study, two modules (M1 and M2) exhibiting
high species richness were predominantly observed in freshwater
sediments, while a distinct and closely interconnected subgroup
(M3) dominated the lagoon sediments influenced by marine water
inundation (Fig. 4). The one-dimensional plot revealed that sub-
groups M3 and M6 were predominantly present in the brackish
layers, whereas M7 was more commonly found in the upper lay-
ers. On the other hand, members of M1 and M5 were primarily
abundant at the deeper part of freshwater sediments (Figure 54,
Supporting Information).

The module M3 comprised two archaeal and 40 bacterial ASVs,
spanning across 10 different phyla. More than half of the ASV phy-
lotypes were affiliated with Chloroflexota (11 ASVs, mainly from

Anaerolineaceae), Caldatribacteriota (comprising eight ASVs of
JS1), Pseudomonadota (also known as Proteobacteria, consisting
of seven ASVs from Gammaproteobacteria in this study) and Bac-
teroidota (with six ASVs from Flavobacteriaceae and Ignavibac-
teriaceae). Additionally, this module included two archaeal lin-
eages, namely from Halobacterota (one ASV from ANME-2a-2b)
and Asgardarchaeota (one ASV from Lokiarchaeia). Such prefer-
ence to marine-water inundation was also reflected by LEfSe anal-
ysis (Fig. 5). Nonparametric Wilcoxon test implied statistical sig-
nificance of the abundance between freshwater sediments and
marine-water influenced lagoons for each module (Fig. 6). For the
freshwater sediments, pairwise adonis analysis did not reveal sta-
tistical significance across different modules.

Discussion

This study demonstrates a substantial change in microbial com-
munities following the infiltration of marine water into freshwa-
ter thermokarst lake sediments. These differences were greater
than differences of microbial communities between the different
lakes and the deeper (freshwater influenced) lagoon sediments.
For the thermokarst lake sediments, multiple paleo-proxies have
revealed relatively stable geochemical conditions with minor vari-
ations over about 8 ka BP when the studied upper 8 m of the sed-
iments accumulated (Jongejans et al. 2020). In the thermokarst
lagoon, marine-water inundation has generated a sulfate zone
on top of the sediments since at least 2 ka BP. Both, the fresh-
and marine-water-influenced sediments were probably subjected
to relatively stable processes during the history of lake devel-
opment, meaning that those geographically adjacent lakes have
likely received pore waters from comparable sources and have ex-
perienced stable hydrologic conditions according to the low and
stable electrical conductivity (Jongejans et al. 2020). Considering
the longstanding anoxic and relatively stable conditions in the
thermokarst lakes, the low level of environmental variability likely
resulted in the overall convergence of microbial community com-
position. The thermokarst lagoon has seasonal connection with
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Figure 5. LDA effect size (LEfSe) identified characteristic taxa with statistically different abundance in the freshwater sediments and
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marine water, which not only caused more dynamic geochemi-
cal variation than the freshwater sediments, but also introduced
new microorganisms. Owing to the periodic input of marine mi-
croorganisms, the seawater-affected part of the thermokarst la-
goon sediment microbiome potentially experienced a greater in-
fluence of species gain or loss, in addition to the preceding effect
of a homogeneous environment.

In our findings, we observe only slight differences in microbial
community composition across the freshwater thermokarst sed-
iments in general. This could potentially be attributed to the rel-
atively shallow depth of the sediment profiles examined, the ge-
ographic proximity of the three research sites, and the relatively
stable environmental conditions as mentioned above. The frozen
conditions inherent to permafrost typically impose strong limi-
tation on the spatial distribution and exchange of microbes, re-
sulting in island biogeography patterns and divergent commu-
nities (Bottos et al. 2018), while the physical constraints within
thermokarst sediments were greatly alleviated, which facilitates
a higher turnover of species. Although spatial distance may still
influence the rate of species replacement, the local and microspa-
tial scales in thermokarst sediments are not expected to signifi-
cantly impede the vertical and lateral exchange of microorgan-
isms. This is especially true when there is a robust hydrological

connection that facilitates species turnover within the sediments.
The co-occurrence of closely related taxa, observed as module 3
in the thermokarst lagoon (Figs 4 and 5), further emphasizes the
homogeneous nature of microbial communities in the sediments
of all three research sites.

The shift from thermokarst lake (LNPF) to lagoon (PFL) resulted
in a decreased diversity of the core microbial network (num-
ber of modules). This is manifested by the co-occurring bacterial
subgroups that decreased from eight in freshwater sediments to
one in the brackish lagoon sediments. In this study, almost all
members within the different modules are positively connected
to each other. Positive associations can enhance biological fit-
ness of a module through mutualism or syntropy (Fisher et al.
2017), which often occurs in phylogenetically related microbes or
is driven by similar environmental conditions and habitat niche
(Weiss et al. 2016). Moreover, network modules were often re-
garded as a functional unit (Wang et al. 2017) and the multi-
functional equivalent of trophic complementarity (Montoya et al.
2015). In this case, the overwhelming module diversity of fresh-
water sediments suggests higher functional diversity than the
marine-water-inundated sediments. Since community modules
are generally governed by habitat features and niche difference
(Lima-Mendez et al. 2015), a substantial decline of module diver-
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(Kassambara 2020).

sity in the brackish lagoon sediments may be a special adapta-
tion to the sulfate-rich saline characteristics, which led to the ob-
served distinct and densely clustered group separate from those
of the freshwater sediments (Figure S4, Supporting Information).
The distinct single module among the brackish lagoon group (M3)
may represent a specialized functional group, which adapted to
the sulfate-rich sediments. In line with the loss of module diver-
sity of the network, a substantial decline in the representative
taxa was also observed after the lagoon transition (Fig. 5; Figure
S3, Supporting Information). The consistent change in microbial
community assemblage provides evidence of significant habitat
filtering following the thermokarst lake to lagoons transition.
Members of the representative module in the saline layers
of the lagoon (M3), including ANME-2a-2b, Sval033, Maribac-
ter, Psychrobacter, and Lokiarchaeia, have potential roles as car-
bohydrate fermenters, reducers of sulfate, nitrate or iron, psy-
chrophiles, or halophiles tolerant to cold environments (Table S1,
Supporting Information). It is worth noting that ANME-2a-2b was
particularly abundant in only two sulfate-rich sediment layers
in the upper lagoon (not in the other six samples of the ma-
rine influenced module group), as highlighted previously (Yang
et al. 2023). However, this lineage was not recognized as char-
acteristic taxon because it was not abundant in most samples
within a group. The anaerobic methanotrophs ANME-2a-2b en-
gage in methane oxidation through syntrophic cooperation with
sulfate-reducing bacteria (SRB), an essential process for reduc-
ing methane emissions from the ocean into the atmosphere
(Boetius et al. 2000). The well-known (and potential) sulfate reduc-
ers such as Desulfobacterota SEEP-SRB1 and Sva1033 co-occurred
with syntrophic partners, including members of Lokiarchaeia,

Flavobacteriaceae, Caldatribacteriota JS1, Anaerolineaceae, and
SBR1031, as such both parts can benefit from their establishment
in the upper lagoon sediment layers. Additionally, prior research
on the lagoon sediments, the thermokarst lagoon water column
has been associated with strong methane oxidation during winter
(Spangenberg et al. 2021).

Members of the bacterial JS1 group appeared to be very impor-
tant overall. JS1 is affiliated to Caldatribacteriota (previous Atrib-
acteriota, OP9) (Katayama et al. 2020), which was frequently ob-
served abundant (31%-40%) in anoxic, organic-rich, and methane-
containing bottom sediments (Webster et al. 2007, Carr et al. 2015,
Lee et al. 2018), as well as in Arctic marine sediment with high
methane concentrations (Carrier et al. 2020). A recent study on
Baltic Sea methane hotspots suggested that JS1 together with De-
halococcoidia in Chloroflexi was strongly correlated with anaerobic
methane oxidation rates (lasakov et al. 2022). As such, the preva-
lence of bacterial phylotypes of JS1 in both marine and freshwa-
ter sediments of the studied sediments likely highlight the eco-
logical importance of this generalist taxon. Aside from JS1, lin-
eages of Bathyarcheota occurred as abundant archaeal members
in the ecosystem. Bathyarchaeotal members are able to perform
acetogenesis, potentially methane metabolism, and dissimilatory
nitrogen and sulfur reduction, and can interact well with anaer-
obic methane-oxidizing archaea, acetoclastic methanogens, and
heterotrophic bacteria (Zhou et al. 2019). The versatile metabolic
potential of this lineage should facilitate their prevalence in
anoxic sediments. Moreover, metagenomic data on the same la-
goon studied here has recently explored nineteen Bathyarchaeo-
tal genomes, which serve as peptide degraders and acetogenic mi-
crobes (Berben et al. 2022).
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Conclusion

This study represents an exploration of the microbial composi-
tion in Arctic coastal thermokarst lakes and a lagoon and suggests
substantial shifts in microbial community due to brackish marine
water inundation in the long term. It also demonstrated distinct
microbial community compositions between marine- and fresh-
water-influenced layers of the same thermokarst lagoon sediment
representing former permafrost layers and newly formed lake
sediment. This suggests that lagoon formation alters microbial as-
semblages more than thermokarst lake formation. In the upper-
most lagoon sediment layers, microbial communities adapt to the
sulfate-rich conditions with a reduction in spatial variation and
diversity of the core microbial population. However, the sulfate-
rich conditions in the top brackish layer of the thermokarst la-
goon result in a distinct core species assemblage prevailing at the
freshwater-marine interface.
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