English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change

Authors
/persons/resource/vrodrigu

Rodriguez,  Victoria
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/abartho

Bartholomäus,  Alexander
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Witzgall,  Kristina
External Organizations;

Riveras-Muñoz,  Nicolás
External Organizations;

Oses,  Romulo
External Organizations;

/persons/resource/sliebner

Liebner,  Susanne
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kallm

Kallmeyer,  J.
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/racho

Rach,  Oliver
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Mueller,  Carsten W.
External Organizations;

Seguel,  Oscar
External Organizations;

Scholten,  Thomas
External Organizations;

/persons/resource/dwagner

Wagner,  D.
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5024662.pdf
(Publisher version), 12MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rodriguez, V., Bartholomäus, A., Witzgall, K., Riveras-Muñoz, N., Oses, R., Liebner, S., Kallmeyer, J., Rach, O., Mueller, C. W., Seguel, O., Scholten, T., Wagner, D. (2024): Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change. - Frontiers in Microbiology, 15, 1319997.
https://doi.org/10.3389/fmicb.2024.1319997


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5024662
Abstract
The microbiota is attributed to be important for initial soil formation under extreme climate conditions, but experimental evidence for its relevance is scarce. To fill this gap, we investigated the impact of in situ microbial communities and their interrelationship with biocrust and plants compared to abiotic controls on soil formation in initial arid and semiarid soils. Additionally, we assessed the response of bacterial communities to climate change. Topsoil and subsoil samples from arid and semiarid sites in the Chilean Coastal Cordillera were incubated for 16 weeks under diurnal temperature and moisture variations to simulate humid climate conditions as part of a climate change scenario. Our findings indicate that microorganism-plant interaction intensified aggregate formation and stabilized soil structure, facilitating initial soil formation. Interestingly, microorganisms alone or in conjunction with biocrust showed no discernible patterns compared to abiotic controls, potentially due to watermasking effects. Arid soils displayed reduced bacterial diversity and developed a new community structure dominated by Proteobacteria, Actinobacteriota, and Planctomycetota, while semiarid soils maintained a consistently dominant community of Acidobacteriota and Proteobacteria. This highlighted a sensitive and specialized bacterial community in arid soils, while semiarid soils exhibited a more complex and stable community. We conclude that microorganism-plant interaction has measurable impacts on initial soil formation in arid and semiarid regions on short time scales under climate change. Additionally, we propose that soil and climate legacies are decisive for the present soil microbial community structure and interactions, future soil development, and microbial responses.