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Abstract In this study, a hydrological modelling framework was introduced to assess the climate change 
impacts on future river flow in the West River basin, China, especially on streamflow variability and 
extremes. The modelling framework includes a delta-change method with the quantile-mapping technique to 
construct future climate forcings on the basis of observed meteorological data and the downscaled climate 
model outputs. This method is able to retain the signals of extreme weather events, as projected by climate 
models, in the constructed future forcing scenarios. Fed with the historical and future forcing data, a large-
scale hydrologic model (the Variable Infiltration Capacity model, VIC) was executed for streamflow 
simulations and projections at daily time scales. A bootstrapping resample approach was used as an indirect 
alternative to test the equality of means, standard deviations and the coefficients of variation for the baseline 
and future streamflow time series, and to assess the future changes in flood return levels. The West River 
basin case study confirms that the introduced modelling framework is an efficient effective tool to quantify 
streamflow variability and extremes in response to future climate change. 
Key words climate change; streamflow; variability; flood; delta-change method; bootstrapping 
 
INTRODUCTION 

Many studies indicate that the risk of both floods and droughts is very likely to rise in many parts 
of the world under a warmer climate with increased climate variability (IPCC 2007). To 
effectively manage our water resources and adapt to climate change induced natural hazards, 
investigation of the global warming effects on future hydro-climate extreme events, the possible 
changes in future streamflow variability and extremes is essential. Such investigation is usually 
achieved by performing macro-scale hydrological modelling, driven by climate scenario datasets 
from either general circulation models (GCMs) or regional climate models (RCMs).  

This paper presents a hydrological modelling framework to project the changes in future river 
flow induced by climate change, with an emphasis on the changes in streamflow variability and 
extreme flow events. The distinguishing features of this framework are: (1) a quantile-based delta-
change method is included to construct future precipitation data that are able to preserve the 
original signals of precipitation changes projected by climate models; and (2) a bootstrapping 
approach is used to effectively test the significance of the changes in streamflow mean, standard 
deviation (SD) and the coefficients of variation (CV) and to estimate the uncertainties in future 
extreme flood projections.  
 
METHODS 

Figure 1 demonstrates the main procedures to quantify the watershed hydrologic variations in 
response to future climate change. First, a quantile-based delta-change method is applied to the 
baseline and future climate outputs from climate models (CMs) such as the Providing Regional 
Climates for Impacts Studies (PRECIS) regional climate model (RCM; Metoffice 2002) for 
analysing future climate-change signals and to construct the future precipitation and air temperature 
datasets. Subsequently, the observed historical and future climatic datasets are used to drive the 
Variable Infiltration Capacity (VIC) model (Liang et al. 1994) for simulating historical 
streamflows and future river flows. Finally, the projected future river flows are compared with the 
simulated historical streamflows to quantify the possible streamflow changes, in which the  
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Fig. 1 Modelling framework for assessing possible future climate change impacts on streamflow. 

 
bootstrap resampling method is used to test the significance of changes in future runoff means, 
SDs, CVs and extreme high flows. The descriptions of the quantile-based delta-change method, 
the VIC model and the bootstrapping technique are given as follows.  
 
Quantile-based delta-change method 

The delta approach was employed to construct a future climate dataset. First, the differences 
between CM-simulated baseline and future air temperature/precipitation are calculated as the 
projected future climate-change signals. Subsequently, the future climatic dataset for driving the 
VIC hydrological model is constructed by superimposing these signals on the observed historical 
climatic data. For instance, future daily air temperature as input to the VIC model is computed by 
applying the mean monthly anomalies between the CM-simulated baseline and future air 
temperature on the observed historical daily air temperature; future daily precipitation is calculated 
by multiplying observed precipitation with a quantile-based delta-change factor. The baseline 
climatology, used as the input of the hydrological model for baseline runs, corresponds to the 
observed meteorological dataset. The quantile-based delta-change method for constructing future 
daily precipitation time series is described in detail below. 

The future daily precipitation time series are constructed by linearly scaling the observed 
historical daily precipitation with a quantile-based delta factor ∆𝑝𝑝 at a daily time scale. For any one 
of the twelve months, the delta factor for scaling the observed historical precipitation quantile at 
each grid cell is defined as the ratio of the CM-simulated future daily precipitation to the CM-
simulated baseline precipitation at the same quantile level. The constructed baseline and future 
daily precipitation time series are given by: 

 

𝑃𝑃𝑏𝑏𝑏𝑏(𝑚𝑚,𝑑𝑑) = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚,𝑑𝑑)                                                                                                          (1) 
 
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚,𝑑𝑑) = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚,𝑑𝑑) × ∆𝑝𝑝                                                                                                (2) 
 
∆𝑝𝑝= 𝑃𝑃𝐶𝐶𝐶𝐶,𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚,𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜)/𝑃𝑃𝐶𝐶𝐶𝐶,𝑏𝑏𝑏𝑏(𝑚𝑚,𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜)                                                                        (3) 

 

where 𝑃𝑃𝑏𝑏𝑏𝑏(𝑚𝑚,𝑑𝑑) and 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚,𝑑𝑑) represent the constructed baseline and future daily precipitation 
on the dth day of month m, respectively, and are used as the inputs to the hydrological model; 
𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 represents the cumulative probability of the observed historical precipitation on the dth 
day of month m (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚,𝑑𝑑)); and 𝑃𝑃𝐶𝐶𝐶𝐶,𝑏𝑏𝑏𝑏(𝑚𝑚,𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜)and 𝑃𝑃𝐶𝐶𝐶𝐶,𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚,𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜) are, respectively, 
the CM-simulated daily precipitations for the baseline and future at the cumulative probability 
𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 . Equation (3) shows that the delta factor ∆𝑝𝑝 is variable for the precipitation events at 
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various levels, instead of using a constant factor for all precipitation events as adopted in 
traditional delta-change methods.  
 
The Variable Infiltration Capacity model  

The VIC model (Liang et al. 1994) is a state-of-the-art physically-based land surface model. It 
simulates a single vertical column of vegetation, snow and soil at each land grid cell. Radiative 
fluxes, turbulent fluxes of momentum, sensible heat and evapotranspiration are calculated at each 
time step. In the vertical soil column, physical processes such as heat diffusion, unsaturated liquid 
water transport, saturated gravitational drainage, local surface runoff, bottom drainage, uptake of 
liquid water by plant roots for transpiration, and freezing and thawing of soil ice, are calculated in 
the VIC model. The conceptual ARNO baseflow model (Todini 1996) is included in the VIC 
model to simulate baseflow from the deepest soil layer. A conceptual parameterization developed 
by Liang and Xie (2001) represents the surface runoff generation by effectively combining the 
infiltration excess runoff mechanism with the saturation excess runoff mechanism. 
 
Bootstrapping for confidence intervals of runoff-change statistics 

To quantify future streamflow change, three runoff-change statistics are defined at annual and 
monthly time scales, in terms of runoff mean, standard deviation (SD) and the coefficient of 
variation (CV). They are: (1) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, the ratio of the projected future runoff mean (𝑅𝑅�𝑓𝑓𝑓𝑓𝑓𝑓, in mm) to 
the baseline runoff mean (𝑅𝑅�𝐵𝐵𝐵𝐵 , in mm); (2) 𝑓𝑓𝑆𝑆𝑆𝑆 , the ratio of the projected future runoff SD 
(𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓  in mm) to the simulated baseline runoff SD (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵, in mm); and (3) 𝑓𝑓𝐶𝐶𝐶𝐶, the ratio of the 
projected future runoff CV (𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓) to the simulated baseline runoff CV (𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵). 

Bootstrapping is a distribution-free resampling method for assessing the accuracy to sample 
estimates (such as confidence intervals for the sample mean and standard deviation) by randomly 
sampling with replacement from observed samples or time series (Efron 1979). To estimate the 
confidence interval (CI) for a runoff-change statistic, the centred bootstrap percentile method 
(Lunneborg 2000) is used; it is applicable to the situation when the sampling distribution of a 
statistic obtained by bootstrapping might be highly skewed. The procedures are as follows:  

 

(1) Calculate the original sample value of a runoff-change statistic, denoted as 𝑓𝑓, from the VIC-
simulated annual/monthly runoff sample pair (N years both for baseline runoff and future 
runoff). 

(2) Generate pair-wise bootstrap runoff samples by randomly drawing with replacement for both 
the baseline and future runoff (taking corresponding years from the N-year simulations).  

(3) Compute the estimate of the runoff-change statistic for the bootstrap runoff sample pair. 
(4) Repeat steps (2) and (3) for M times (20 000 times in the case study) to produce M bootstrap 

estimates for that statistic. 
(5) Arrange the M bootstrap statistic estimates in ascending order to find the 𝛼𝛼/2 and 1 − 𝛼𝛼/2 

quantiles (𝑓𝑓𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑓𝑓1−𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), and calculate the lower and upper confidence limits of the runoff 
change statistic (𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐶𝐶𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) as: 

 

𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒 = 2𝑓𝑓 − 𝑓𝑓1−𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                                                                              (4) 
 

𝐶𝐶𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2𝑓𝑓 − 𝑓𝑓𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                                                                             (5) 
 

The estimated CIs of these runoff change statistics are analysed to determine whether the projected 
future runoff mean, SD and CV are significantly different from the corresponding baseline runoff 
statistics. Here, the CI of 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is taken as an example. If the 1 − 𝛼𝛼 confidence interval of 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
includes 1.0, it indicates that the projected mean runoff under a future scenario does not differ 
significantly from the baseline mean at a 𝛼𝛼 significance level. If the lower confidence limit of 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is >1.0, then the future mean runoff can be considered significantly larger than the baseline 
mean. Similarly, if the upper confidence limit of 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is below 1.0, it implies that the future 
mean runoff is expected to be significantly lower than the baseline mean runoff. 
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Bootstrapping for uncertainties in extreme flood projections 

The bootstrapping method is used to quantify the uncertainty in estimating the changes in extreme 
flooding events. At first, paired bootstrap samples are generated, by randomly drawing with 
replacement from the original annual maximum daily streamflow samples under the baseline and 
future climates. Subsequently, the change of T-year flow is estimated by fitting a Pearson type III 
distribution to the resampled annual maximum flows for the baseline and future climates, and 
taking the difference between these two estimates. The whole procedure is repeated a large enough 
number of times (20 000 times in the case study) to derive a frequency distribution of possible 
predicted changes in the T-year flood event. 

 
STUDY AREA AND DATA PREPARATION 

The West River basin located in South China and having a total drainage area of 3.05 × 105 km2 
was chosen as the case study area (Fig. 2). It has a tropical and subtropical climate. Historical 
meteorological data of 33 weather stations in the basin (Fig. 2) were obtained from the China 
Meteorological Administration, and include daily records of maximum and minimum air 
temperature and precipitation for 1961–1990. Observed daily streamflow data of 16 hydrologic 
stations (Fig. 2) during 1961–1989 were provided by the Ministry of Water Resources, China. The 
PRECIS RCM climate data were employed for deriving future climate change signals; they are 
composed of simulated daily maximum and minimum air temperature and precipitation in the 
baseline years (1961–1990) and future years (2011–2040) under the A1B scenario of the 
Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) 
at a 50-km spatial resolution. Linear interpolation was performed to transform the weather station 
data and PRECIS-simulated forcing data to a 0.25° resolution.  
 

 
Fig. 2 Meteorological and streamflow stations in the West River basin. 

 
CASE STUDY RESULTS 
Future air temperature and precipitation changes 
Relative to the baseline period (1961–1990), air temperature under the A1B scenario (2011–2040) 
undergoes a moderate increase of 0.9–1.5°C throughout the year (Fig. 3). The highest temperature 
increase appears in August and the lowest increase in October. Mean annual precipitation under 
the A1B scenario is projected to increase by 7.4% over the baseline situation. A considerable 
increase in precipitation would occur in most of the rainy season (May–September), whereas part 
of the dry season (November–February) is likely to become much drier, with the largest 
precipitation reduction, 29.1%, in December. 
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Fig. 3 Monthly mean air temperature and precipitation in the West River basin under baseline (1961 to 
1990) and A1B (2011 to 2040) scenarios. 
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Fig. 4 Changes in mean monthly runoff in the Wuxuan watershed: (a) comparison between the baseline 
and A1B mean monthly runoffs; and (b) monthly runoff-change statistic fMEAN with its 95% CI. 
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Fig. 5 Changes in monthly runoff SD in the Wuxuan watershed: (a) comparison between the baseline 
and A1B monthly runoff SDs; and (b) monthly runoff-change statistic fSD with its 95% CI. 
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Fig. 6 Changes in monthly runoff CV in the Wuxuan watershed: (a) comparison between the baseline 
and A1B monthly runoff CVs; and (b) monthly runoff-change statistic fCV with its 95% CI. 

 
Future changes in streamflow 

 Means of streamflow Figure 4 compares the calculated A1B monthly mean runoff at 
Wuxuan hydrologic station (Fig. 2) with the baseline one and shows the 95% CI of fMEAN for each 
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month calculated by the 20 000 bootstrapping resamples. It indicates that there is a significant 
increase in mean runoff in most months of the wet season (May–September) under the A1B 
scenario. At the beginning and end of the dry season (October and March, respectively), mean 
runoff in the future tends to rise significantly. Other months of the wet season are projected to 
have an increasing trend in mean runoff, with a significant negative change in December and 
January.  
 
 Streamflow variability With respect to the monthly runoff variability, a significant increase 
in runoff SDs is found in six months (February–March, May–June, August and October), and the 
April and December runoff SDs under A1B are significantly lower than those in baseline (Fig. 5). 
In terms of runoff CV, a significant increase in runoff variability is only projected in February, 
March and August, while December would undergo a decrease in runoff variability (Fig. 6).   
 
 Streamflow extremes To predict the climate change impact on flood return levels, the 
simulated annual maximum daily streamflow series under the baseline and A1B scenarios were fitted 
by the Pearson type III distribution (Fig. 7). It demonstrates clear changes in the magnitude and 
frequency of extreme flooding events at Wuxuan station. The 100-year daily river flow under the 
A1B scenario increases by 10.9% over the baseline high at the same return period; the baseline 100-
year event would be approximately a 50-year event in A1B. The extreme high flows at other return 
periods (5, 10, 20 and 50 years) in A1B are estimated to rise by 11.2–12.6% over the baseline 
extremes.  

In this study, the bootstrapping technique with 20 000 repetitions was used to test whether 30-
year streamflow simulations under both baseline and A1B scenarios are sufficient to project the 
future changes of flooding river flows at various return periods. With bootstrapping, the 100-year 
maximum daily discharge under A1B would increase by 5640 m3/s on average (Fig. 7(b)), fairly 
consistent with the Pearson type III plots in Fig. 7(a) which indicate an increase of 5600 m3/s. The 
bootstrapping method also gives a mean increase in the future extreme high flow at other return 
periods (5, 10, 20 and 50 years), with a similar magnitude of increase as shown in Fig. 7(b) 
Though an overall increase in extreme high river flow is estimated by bootstrapping, there is a 
considerable probability of predicting a decrease, particularly in the case of flood events at higher 
return periods. For the 100-year and 50-year discharges, this probability is, respectively, 9.5% and 
6.6%, whereas it decreases to 2.4% and 0.45% for the 20-year and 10-year events and the 
likelihood is just 0.02% for 5-year flow. Figure 7(b) illustrates that the 100-year and 50-year 
events have a wider band of variation, while the 5-year event has the narrowest band. This implies 
that the 30-year streamflow simulations for the baseline and A1B scenarios are too short and may 
not sufficiently capture the changes in flood events at higher return periods and larger sample sizes 
of annual maximum flow time series are required to reduce this uncertainty. 
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(a)                                                                                        (b) 

Fig. 7 Pearson type III plots of annual maximum daily discharge under baseline and A1B scenarios (a) 
and frequency distribution of possible predicted changes in extreme high flow at various return periods (b). 
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CONCLUSIONS 

A modelling framework was introduced to investigate climate change impacts on river flow, in 
particular on streamflow variability and extremes. A delta-change method with quantile-mapping 
was used to construct future forcing data, which is able to preserve the signals of the extreme 
weather events in future scenarios. Driven by the historical and future forcing data, the VIC model 
was used to simulate baseline streamflow and to project future streamflow at daily time scales. A 
bootstrapping approach was used to test whether the projected future streamflow differs 
significantly from the baseline river flow at monthly time scales, in terms of runoff mean, SD and 
CV. This method was also applied to quantify the uncertainties of the predicted changes in 
extreme flood events that are caused by the limited size of annual extreme flow samples. The case 
study shows that the 30-year streamflow simulations for baseline and A1B scenarios leads to 
larger bands of variation of the extreme high flow changes at longer return periods. Therefore, 
hydrological simulations for longer periods are necessary so as to cut down this uncertainty. 
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