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INTRODUCTION

Ontogenetic shifts in habitat use and trophic posi-
tions (TPs) are a common trait in many fish species
due to changing resource needs and the need to
 minimize predation risk during different life stages
(Kimirei et al. 2013, Nagelkerken et al. 2015). The
habitats and food webs upon which different life
stages rely are being increasingly altered by anthro-
pogenic influences, i.e. climate change, habitat
degradation and overfishing (Levin et al. 2015). Yet
for some species there is insufficient insight into life-
time habitat utilization and connectivity due to lim-
ited approaches for elucidating individual fish life
histories. This makes it difficult to predict the re -
action of a fish population to environmental distur-
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ABSTRACT: Habitat connectivity and trophic shifts
during the lifetime of an individual fish are important
determinants of fish population growth and persist-
ence, yet remain little understood for many species.
We investigated whether insights into individual life-
time migration, trophic  position (TP) and environ -
mental nitrogen dynamics could be achieved using
compound-specific nitrogen isotope analysis of oto -
lith proteinogenic amino acids (AAs). By comparing
acoupa weakfish Cynoscion acoupa otoliths and mus-
cle tissue from the monsoonal Amazon area in Pará
with otoliths from semi-arid Rio Grande do Norte
(RGN), Brazil, this study illustrates estuarine to
coastal shelf habitat use and trophic ecology during
juvenile and adult stage growth. Muscle tissue and
otoliths gave comparable TPs for both life stages,
while weighted mean δ15N values of all source AAs
 differed between tissues. These differences reflected
large seasonal and spatial changes in nitrogen bio-
geochemical cycles and anthropogenic nitrogen influ-
ences from the Amazon River onto the coastal shelf of
Pará. AA δ15N values of fish otoliths from the Pará re-
gion indicated changes in TP and sources of nitrogen
between life stages, whereas analysis of fish otoliths
from the RGN region indicated similarities in individ-
ual TP and sources of nitrogen through ontogeny.
However, in both areas, individual adult TP ranged
between 3 and 4, whereas juvenile TP remained
around 2.8 to 3.0 in Pará and RGN, respectively. Since
otoliths preserve a record of baseline δ15N values over
the lifetime of individual fish it may be possible to
infer migration and TP across pre historic ecosystems
from AA isotopic analysis of an cient otoliths.
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In the juvenile stage Cynoscion acoupa individuals have
similar trophic ecologies, while in the adult stage different
feeding strategies are employed.
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bances, and also impedes effective implementation
of conservation measures (Olds et al. 2016).

Chemical analysis of fish otoliths can be used to
gain information about movement and environmen-
tal conditions, such as salinity and temperature, at
different life stages of an individual (Thorrold et al.
1997, Elsdon & Gillanders 2002, Elsdon et al. 2008).
This is possible because growth of otoliths often re -
sults in visible (sub-)annual increments and incorpo-
ration of environmental inorganic chemistry (Cam-
pana 1999). Carbon isotope analysis of essential
amino acids (AAs) in otolith protein (Campana &
Neilson 1985, Nagasawa 2013) has recently been
used to identify fish residency and habitat connectiv-
ity (McMahon et al. 2011a,b, 2012). Yet to under-
stand exact fish movement, the geographic variation
in δ13C values of essential AAs in primary producers
must be known. With δ15N values of AAs, lifetime
ecosystem biogeochemistry, TP and migration can be
inferred directly from the otolith.

Proteinogenic AAs have consistent differences in
δ15N values, which lead to their classification as
source or trophic AAs (Popp et al. 2007). Source AAs
directly indicate the nitrogen baseline, as they re -
main largely unaffected by metabolic processes in
consumers (McClelland & Montoya 2002, Chika -
raishi et al. 2007) and therefore reflect nitrogen bio-
geochemical processes of the ecosystems in which
the fish resided (Choy et al. 2012, Lorrain et al. 2015,
Hetherington et al. 2016). Since nitrogen biogeo-
chemical processes can vary across geographical
landscapes, the δ15N values of source AAs, like that
of δ13C values of essential AAs, can be used to recon-
struct fish migrations (Madigan et al. 2014, 2016).
Trophic AAs are enriched in 15N relative to source
AAs due to complex nitrogen cycling in organisms
(Chikaraishi et al. 2007, O’Connell 2017), which oc -
curs with each trophic step when trophic AAs
undergo transamination, transfer of an amino group
to a ketoacid or deamination by removing amine
functional groups (McClelland & Montoya 2002,
Chikaraishi et al. 2007, Braun et al. 2014). Impor-
tantly, the difference in δ15N values between trophic
and source AAs provides an estimate of the TP of the
fish that is normalized to baseline isotopic composi-
tions (McClelland & Montoya 2002, Chikaraishi et al.
2009, Bradley et al. 2015, Nielsen et al. 2015).

The size and low protein content of otoliths limit
isotopic analyses of individual AAs. This limitation is
particularly problematic for nitrogen isotope analysis
of AAs since δ15N-AA analysis typically requires ~9×
the amount of protein compared to δ13C-AA analysis.
With their typically small sizes and low protein con-

tent of 1 to 4% (Degens et al. 1969), most otoliths do
not contain enough material for nitrogen isotopic
analysis of individual AAs. However, some fish spe-
cies possess relatively large otoliths, such as Cyno -
scion acoupa, a large commercial fish with adults
possessing 8 g otoliths up to 5 cm in length. This spe-
cies occurs along the entire coast of Brazil; their early
life stages are generally associated with mangrove
areas, while adults are exclusively caught in offshore
coastal shelf waters (Barletta et al. 2003). The present
study, therefore, aimed to identify whether δ15N val-
ues of AAs from C. acoupa otoliths can be used to
infer habitat use, migration and TP at juvenile and
adult life stages. Otoliths and muscle tissue of C.
acou pa from the Amazon state Pará, Brazil, were col-
lected simultaneously in the dry season to determine
whether source AA δ15N values and TP of 2 life
stages extracted from both tissues were similar. To
compare these life history parameters of C. acoupa in
2 distinct Brazilian ecosystems, adult otoliths were
collected in the monsoonal Amazon area of Pará and
the semi-arid area of Rio Grande do Norte (RGN),
Brazil.

MATERIALS AND METHODS

Species and study areas

The acoupa weakfish Cynoscion acoupa is a mar-
ine demersal sciaenid species. Juvenile C. acoupa
utilize mangrove ecosystems in estuaries, whereas
adults are strictly found in coastal shelf habitats and
have a carnivorous diet that consists mainly of shrimp
and fish (Barletta et al. 2003, Ferreira et al. 2016).
Adult C. acoupa are caught up to ~125 cm in size and
typically weigh ~16 kg (de Matos & Lucena 2017). In
northern Brazil this species matures around a length
of 40 cm and displays biannual offshore spawning at
the onset and during the rainy season (Almeida et al.
2016). The C. acoupa fishery at Pará and RGN is arti-
sanal and fish are sold at local fish markets (Barletta
et al. 1998, K. Vane pers. obs.).

The coastal ecosystem at Pará is influenced by high
annual precipitation of over 2000 mm that results in a
river outflow with a high nutrient load in the wet sea-
son (Smith & Demaster 1996). The coast is strongly
macro-tidal with amplitudes of ~4 m, harbours large
estuarine mangrove deltas and has an extensive
coastal shelf. In contrast, the coast of RGN is semi-
arid with an annual precipitation of 1250 mm, has
very low estuarine mangrove coverage and a narrow
coastal shelf. Mean tidal amplitude is ~2 m and the
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coastal areas receive very low freshwater runoff
(Schaeffer-Novelli et al. 1990). A strong North Brazil
Current, as a branch from the Southern Equatorial
Current, runs along this northeast coast of Brazil
(Medeiros et al. 1999).

Sample collection

Four otoliths of C. acoupa with a body length of 92
to 114 cm standard length (SL) and muscle tissue of 2
similarly sized individuals (91 and 100 cm SL) were
collected at the fish market in Bragança (1° 3’ S,
46° 46’ W), Pará, Brazil. Simultaneously, muscle tis-
sue of 4 juveniles (26 to 36 cm SL) were sampled in
mangrove areas near Bragança in November and
December 2014 (dry season). An additional 4 C.
acoupa otoliths were collected at the fish market of
Natal (5° 46’ S, 35° 12’ W), Rio Grande do Norte,
Brazil; the original body sizes of these fish were
unknown. However, with our own collection (n = 66)
of C. acoupa otoliths of which otolith weight (mg) and
fish SL (mm) was known, the SL could be estimated
with the exponential relationship 24.649 × otolith
weight0.4379.

All otoliths were embedded in resin, sectioned to
2 mm thickness and mounted on a glass slide. Otolith
surfaces were not polished after sectioning and were
only wiped with acetone. Material of the outer edge
and inner part of all otoliths were subsampled with a
mounted hand-microdrill with a 0.5 mm drill bit to a
calcium carbonate sample mass of 45 mg (average
protein content 0.7%).

Stable isotope analysis

Otolith powder (~45 mg) and homogenized muscle
tissue (5 mg) were hydrolyzed with 0.1 ml 6 N HCl
mg−1 of material at 150°C in a heating block for
70 min. The resulting 5.8 N HCl was evaporated at
110°C in a heating block under a gentle stream of N2

for approximately ~3 to 4 h. AAs were isolated using
cation exchange resin (DOWEX 50WX8, 100 to 200
mesh, hydrogen form; Metges et al. 1996, Takano et
al. 2010). The sample was again dried under a stream
of N2 at 80°C in a heating block and after addition of
0.2 N HCl again heated to 110°C for 5 min and dried
at 55°C under N2. AAs were derivatized with an
acetyl chloride and isopropanol mixture (4:1, v/v),
heated to 110°C for 60 min and dried at 60°C under a
N2 stream. Subsequently, AAs were derivatized with
600 μl methylene chloride and 200 μl trifluoro-acetic

anhydride by heating at 100°C for 15 min and dried
under a N2 stream at room temperature. The trifluo-
roacetyl and isopropyl ester derivatives were further
purified with a liquid/liquid extraction of 2 ml 1 M P-
buffer and 1 ml chloroform as described by Hannides
et al. (2009). The AAs in chloroform were evaporated
under N2 at room temperature, methylated again and
stored at −20°C. Before analysis, the derivatization
agents were evaporated under N2 at room tempera-
ture and samples were dissolved in 15 μl (otolith) and
125 μl (muscle tissue) ethyl acetate.

The δ15N values of AAs in the otolith and muscle
tissue samples were measured using a Delta V Plus
mass spectrometer interfaced to Trace GC gas chro-
matograph through a GC-C III combustion furnace
(980°C), reduction furnace (650°C) and liquid nitro-
gen cold trap via a GC-C III interface. All samples
were injected onto a forte BPx5 capillary column
(60 m × 0.32 mm × 1.0 μm film thickness) with a
split/splitless injector in splitless mode. The injector
temperature was 180°C and had a constant helium
flow rate of 1.4 ml min−1. The column was initially
held at 50°C for 2 min and increased to 120°C at 15°C
min−1. Subsequently, temperatures were increased to
195°C at 4°C min−1, then to 255°C at 5°C min−1 and to
300°C at 15°C min−1, where it was held for 8 min. All
samples were analyzed in triplicate, and measured
δ15N values were normalized to the known nitrogen
composition of internal reference compounds (L-2-
aminodipic acid and L-(+)-Norleucine) co-injected
with each sample. When the co-injected reference
compounds were not useable due to co-elution ef -
fects, a linear correction was applied to measured
isotope values. The linear correction was derived
from a suite of 14 AAs of known isotopic composition
that was analyzed between each triplicate sample
analysis. The average standard deviation of δ15N val-
ues derived from multiple AA analyses was 0.4‰
and ranged from 0.0 to 1.3‰. AA molar percentages
were determined from individual AA peak areas rel-
ative to the total AA peak area and using the external
standard approach.

Trophic position estimations

The nitrogen isotopic composition of 6 trophic AAs
(alanine, Ala; leucine, Leu; isoleucine, Iso; proline,
Pro; aspartic acid, Asp; glutamic acid, Glu) and 4
source AAs (glycine, Gly; serine, Ser; phenylalanine,
Phe; lysine, Lys) could be measured consistently.
Weighted mean values ( ) for groups of trophic and
source AAs were calculated as:

xw
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(1)

where δ15Nx is the nitrogen isotopic composition of a
specified AA within the grouping and σx is the stan-
dard deviation of the specific AA based on triplicate
analysis of each sample (Hayes et al. 1990).

TP was calculated with the equation:

(2)

where δ15NTrp and δ15NSrc are the nitrogen isotopic
composition of selected trophic and source AAs,
respectively. In this study, a combination of source
AAs (Gly, Lys, Phe) and trophic AAs (Ala, Glu, Leu)
was used, which has been shown to provide reliable
TP calculations for teleosts (Bradley et al. 2015). The
symbol β is the difference between the δ15N values of
trophic and source AAs in primary producers, and
was calculated to be 3.4 ± 0.9‰ for the aforemen-
tioned combination of AAs (see Bradley et al. 2015).
The trophic discrimination fractionation factor
(TDFAA) is the weighted mean average 15N enrich-
ment in trophic AAs (Ala, Glu, Leu) relative to source
AAs (Gly, Lys, Phe) per trophic level, and was found
by Bradley et al. (2015) to be 5.7 ± 0.3‰ for this
 combination of trophic and source AAs.

Uncertainty in TP was calculated by propagation of
errors:

(3)

where σ is the standard deviation of TP, β and TDF
(see Bradley et al. 2015, Jarman et al. 2017). The σ for
weighted mean δ15N values for trophic and source
AAs was calculated as: 

(4)

(Hayes et al. 1990). Indicated uncertainties are
reported here as 2 standard deviations.

RESULTS

Reconstructed individual Cynoscion acoupa body
lengths from the RGN otoliths (92 to 107 cm SL) were
in the same size range as those collected in Pará (92
to 114 cm SL). Samples obtained from the outer edge
of Pará and RGN otoliths were estimated to cover a
life period of ~2 yr based on the drill holes covering 2

opaque and translucent areas (Fig. 1). A wider sur-
face was micro-drilled in the inner part of the otoliths
compared to the edges (Fig. 1). However, otolith
growth is known to be generally higher in the early
life stages of the fish, and therefore the wider surface
of the inner part was also estimated to cover a ~2 yr
life span in the juvenile stage.

Comparable TPs were derived from adult muscle
tissue and otolith adult stages from Pará, with TP
averages of 3.8 and 3.4 ± 0.3, respectively. However,
TPs obtained from the adult stage in RGN otoliths
(3.6 ± 0.4) were similar to those in adult Pará otoliths
(3.5 ± 0.3) (Wilcoxon rank-sum, W = 9, p = 0.885;
Fig. 2A, Table 1). TPs acquired from juvenile muscle
tissue from Pará were similar to the juvenile stage of
Pará otoliths (averages 3.0 ± 0.2 and 2.8 ± 0.3, respec-
tively; Wilcoxon rank-sum, W = 15, p = 0.057). Mus-
cle tissue from RGN was not available for analysis.
TPs from the juvenile and adult stage in Pará otoliths
were different (Wilcoxon rank-sum, W = 0, p = 0.028)
in contrast to the similar juvenile and adult stage TPs
from RGN otoliths (Wilcoxon rank-sum, W = 2, p =
0.114; Fig. 2A, Table 1). Furthermore, a comparison
between otoliths from Pará and RGN indicated simi-
lar juvenile (Wilcoxon rank-sum, W = 15, p = 0.057)
and adult stages (Wilcoxon rank-sum, W = 9, p =
0.885; Fig. 2B, Table 1).
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Fig. 1. Example of drill holes (0.5 mm diameter) in the inner
part (juvenile stage) and outer edge (adult stage) of a Rio
Grande do Norte Cynoscion acoupa otolith of 2 mm section
thickness. Displayed are also the incremental rings indi-
cated with white lines, which are only detected in the oto-

liths collected in Rio Grande do Norte
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In Pará, significant differences were observed be -
tween otolith juvenile and adult stages for both
source (Wilcoxon rank-sum, W = 16, p = 0.028) and
trophic AA δ15N values (Wilcoxon rank-sum, W = 0,
p = 0.028). Source AA weighted mean δ15N values of
juvenile and adult C. acoupa muscle tissue collected
during the dry season in Pará were similar (mean val-
ues 5.9 ± 0.2 and 5.7‰, respectively), although differ-
ent in trophic AA δ15N values (19.5 ± 1.8 and 24.5‰,
respectively). However, source AA δ15N values of
adult muscle tissue were ~1.4‰ lower than those in
otolith edges, but similar in trophic AA δ15N values
(averages 24.5 ± 0.5 and 22.8‰, respectively). Juve-
nile stage otolith and muscle tissue from Pará also
displayed distinct source AA δ15N values (Wilcoxon
rank-sum, W = 0, p = 0.028), although trophic AA
δ15N values were comparable (Wilcoxon rank-sum,
W = 0, p = 0.114; Fig. 3, Table 1).

In RGN, no differences were found between otolith
juvenile and adult stages for either source (Wilcoxon
rank-sum, W = 3, p = 0.2) or trophic AA δ15N values
(Wilcoxon rank-sum, W = 2, p = 0.114). Source and
trophic AA δ15N values in RGN otoliths were also not
different from Pará otolith juvenile (Wilcoxon rank-
sum, W = 8, p = 1 and W = 0, p = 0.114) or adult stages
(Wilcoxon rank-sum, W = 2, p = 0.114 and W = 1, p =
0.057; Fig. 3, Table 1).

Most difference in source AA δ15N values was dis-
played by Gly with lower δ15N values in muscle tis-
sue than otoliths, while Lys had similar δ15N values
across sample groups. Trophic AA δ15N values of
both otolith and muscle tissue were generally higher
in adult stage than in juvenile stages (Fig. 4). Individ-
ual AA abundances were similar between juvenile
and adult stage of otoliths, although juvenile muscle
tissue had a lower abundance of Lys and Gly than
adult muscle tissue. Overall, Asp, Glu and Ser were
the most abundant AAs in otoliths, while Lys, Ala and
Leu were more abundant in muscle tissue (Table 2).

DISCUSSION

Fish otoliths can provide individual lifetime infor-
mation about migration, TP and environmental nitro-
gen dynamics based on AA δ15N values. This study
showed that the average TP acquired from AA δ15N
values for Cynoscion acoupa muscle tissue and
otoliths agreed well for each life stage in fish col-
lected from the Pará region. On the contrary, these
tissues often recorded different source AA δ15N val-
ues. These differences could be due to dissimilar
rates of AA incorporation into muscle tissue com-
pared to the otolith matrix. The turnover time of spe-
cific AAs in muscle tissue can range from months to a
year (Madigan et al. 2012, Bradley et al. 2014), and
thus some AAs can record (inter-)seasonal variations
of δ15N values in the environment. Due to the low
protein content in otoliths, samples here average iso-
topic values over approximately 2 yr. Otolith proteins
are produced de novo daily by the saccular epithe-
lium (Payan et al. 1999, Takagi et al. 2005), of which
only ~1% is deposited within the calcium carbonate
structure without turnover (Edeyer et al. 2000, Borelli
et al. 2001). A strong relationship between essential
AA δ13C values of muscle and otolith edge of Lutja -
nus spp. indicated that both tissues derive AAs from
the bloodstream with minor fractionation (McMahon
et al. 2011b). Subtle δ15N value differences of par -
ticular AAs can be expected between tissues de -
pending on the individual’s metabolism, although
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this ‘biological noise’ can be overcome by using mul-
tiple AAs (O’Connell 2017). The similarities in AA
abundances between muscle tissues and otoliths of
this study also suggested a comparable AA incorpo-
ration into both tissues. Although muscle tissue and
otolith AA δ15N measurements from the same indi-
vidual would confirm the comparability of AA incor-
poration, the large temporal differences represented
by these tissues (months vs. ~2 yr) and individual fish
behavior might account for the observed differences
in source AA δ15N values found in this study. Thus,
we attribute the differences in source AA δ15N values
found between the tissues as a likely result of the
temporal differences represented by the otolith sam-
pling and muscle turnover time.

Seasonal nitrogen isotopic variations 
in the Amazon

The estuarine and coastal shelf habitats in the
Amazon region are influenced by strong seasonal
hydrodynamics that can create distinct baseline
δ15N values. During the wet season, most of the dis-
solved inorganic nitrogen is discharged by the
Amazon River into coastal areas and dispersed sev-
eral kilometres offshore (De master & Pope 1996,
Subramaniam et al. 2008). Much of this nitrogen
originates from organic nitrogen fertilization in the
in creasing agricultural use of the Amazon rain-
forests and un treated sewage from adjacent cities
(Mar tinelli et al. 2012, Bustamante et al. 2015).
Anthropogenic orga nic nitrogen input often leads to
high δ15N values (>10‰) in dissolved inorganic

nitrogen as well as in the tissues of
local organisms (Montoya 2007, van
de Merwe et al. 2016). This is
reflected in bulk δ15N values of sur-
face zooplankton collected in the wet
season at an Amazon estuary with
values of 8 to 11‰ (Giarrizzo et al.
2011), which de creased to be tween 3
and 5‰ in oceanic areas (Loick-
Wilde et al. 2012). No bulk δ15N val-
ues have been published for the dry
season in the Amazon. However,
diminished river discharge and lower
offshore dissolved nitrate concentra-
tions during this season (23 μmol
kg−1 with rising river discharge and
12 μmol kg−1 with falling river dis-
charge; Demaster & Pope 1996) might
imply that anthropogenic nitrogen is
contained in the estuaries and leads
to lower offshore δ15N  values.

Source AA δ15N values in adult and juvenile mus-
cle tissue samples collected in the Pará dry season
were similar; however, they were lower than those
measured in otoliths. Due to the turnover time of
muscle tissue AAs of on average several months, we
posit that muscle tissue likely recorded the dry sea-
son baseline δ15N values. Otolith AA measurements,
which represent 2 life years, probably average the
changing baseline δ15N values of the wet and dry
season and result in overall elevated source AA δ15N
values. On the contrary, otolith AA measurements,
which represent 2 life years, probably average the
changing baseline δ15N values of the wet and dry
season and result in overall elevated source AA δ15N
values. Higher source AA δ15N values in otolith juve-
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nile stages compared to otolith adult stages could
indicate habitat separation. Generally, mangrove
estuaries are important feeding areas for C. acoupa
juveniles; these fishes can be found there before and
after major rainfall events, following the growth
cycles of zooplankton and shrimp populations (Bar-
letta-Bergan et al. 2002, Krumme et al. 2004, Nó -
brega et al. 2013, Lima et al. 2015). Adults remain in
offshore coastal shelf areas during the entire year,
and thus, the similar juvenile and adult muscle tissue
source AA δ15N values might suggest seasonal move-
ment of juveniles towards the coastal shelf during
the dry season. However, it cannot be excluded that
the δ15N baseline differences between estuaries
and coastal shelf areas are negligent during the dry
season.

C. acoupa in distinct Brazilian ecosystems

In contrast to Pará otoliths, the source AA δ15N val-
ues and average TP estimations of juvenile and adult
stage from RGN otoliths were similar. This may indi-
cate a habitat overlap during both life stages in RGN
or that the fish lived in different habitats with indis-
tinguishable baseline δ15N values. RGN mangrove
estuaries, as those in Pará, also receive anthropo -
genic nitrogen due to intensive shrimp farming, agri-
culture and bovine husbandry (de Lacerda et al.
2006, Bustamante et al. 2015). These similar organic
nitrogen inputs likely underlie the comparable
source AA δ15N values in otolith juvenile stages from

Pará and RGN. Nevertheless, low river runoff at the
RGN coast prevents high deposition of anthropo -
genic nitrogen onto the coastal shelf (Schaeffer-Nov-
elli et al. 1990) and thus will have a negligible effect
on offshore baseline δ15N values. Yet similarly high
source AA δ15N values were measured in the adult
and juvenile stage of individual otoliths. As C. acou -
pa adults are ex clusively caught offshore from RGN,
the high source AA δ15N values in otolith adult stages
from RGN are likely not of anthropogenic origin. The
coastal shelf of RGN is an oligotrophic environment
(Medeiros et al. 1999), which is distinct from the
eutrophic Pará coast due to input of nutrients from
the Amazon River (Nittrouer & Demaster 1996, Smith
& Demaster 1996). Nevertheless, there is a lack of
knowledge on biogeochemical processes at the RGN
coastal shelf. It is thus possible that estuarine anthro-
pogenic nitrogen and offshore nitrogen cycling in
RGN led to similar source AA δ15N values. This
seems to be supported by similar bulk δ15N values of
zooplankton of 6 to 8‰ during the dry season in RGN
estuaries and the coastal shelf 10 km offshore
(Schwam born et al. 1999). However, a habitat over-
lap of juvenile and adult C. acoupa at offshore
RGN habitats is also conceivable, and is consistent
with the experience of local fishermen who reported
catching both life stages at the same offshore lo -
cations (K. Vane pers. obs.). Through microbial
 transformations of nutrients in mangrove ecosystems,
estuarine mangrove habitats play a large role in the
pro ductivity of aquatic food webs (Holguin et al.
2001). With smaller mangrove coverage, the primary
productivity of RGN estuaries and offshore habitats
is lower than at the coast of Pará (Schaeffer-Novelli
et al. 1990, Ekau & Knoppers 1999). We speculate
that Pará juveniles might benefit from larger es -
tuarine productivity on lower trophic levels, inducing
offshore migration at a slightly later life stage than
in RGN.

Variations in TP

While juvenile stage TPs of both Pará and RGN
otoliths were highly consistent between individuals
with 0.2 to 0.4 TP variation, individual TPs from
otolith adult stages in both areas varied by 0.8 to
1 TP. Such high TP variation in adult C. acoupa may
be an indication of individual diet variation or could
relate to how we calculated TP. The uncertainties
surrounding TDF values due to different turnover
times of AAs can complicate TP estimations of high
trophic level organisms (Chika raishi et al. 2015,

8

Muscle Otolith
Adult Juvenile Adult Juvenile 
(n = 2) (n = 4) (n = 4) (n = 4)

Source
Gly 11.7 8.6 ± 0.8 7.8 ± 0.4 7.9 ± 0.6
Thr 3.5 4.4 ± 0.9 6.5 ± 0.8 5.8 ± 0.7
Ser 3.7 3.4 ± 0.3 7.3 ± 0.8 7.2 ± 0.7
Val 2.6 4.3 ± 0.9 7.3 ± 1.4 7.8 ± 1.1
Phe 4.3 3.8 ± 1.0 1.6 ± 0.1 1.3 ± 0.3
Lys 25.0 16.9 ± 0.6 6.3 ± 0.7 5.5 ± 0.7

Trophic
Ala 9.7 10.1 ± 0.8 5.9 ± 0.9 6.7 ± 1.4
Leu 10.1 9.8 ± 0.5 4.9 ± 0.2 4.4 ± 0.3
Ile 3.7 4.7 ± 0.3 3.1 ± 0.9 3.1 ± 0.5
Pro 3.9 4.8 ± 0.9 8.5 ± 0.6 8.9 ± 0.3
Asp 6.8 12.2 ± 1.6 19.8 ± 1.0 19.5 ± 1.2
Glu 15.1 16.9 ± 0.8 21.1 ± 1.1 21.8 ± 0.8

Table 2. Molar percentages with standard deviation of 12
 individual amino acids in adult and juvenile stage muscle 

tissue and otoliths of Cynoscion acoupa from Pará
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Nielsen et al. 2015, McMahon & McCarthy 2016).
This can lead to TP calculations with up to 1 TP vari-
ation, although can be avoided with multiple source
and trophic AAs (Bradley et al. 2014, 2015). Contro-
versy exists as to whether Gly should be designated a
source AA (Chikaraishi et al. 2009, McMahon et al.
2015), which could introduce variation in TP calcula-
tions. However, Bradley et al. (2015) found patterns
of Gly δ15N values consistent with other source AAs
in over 200 marine teleosts. In addition, Fuller & Pet-
zke (2017) speculated that distinct enzymatic activi-
ties and pathways in different organisms and tissues,
such as muscle tissue, can also make Gly behave like
a source AA. We suggest that in C. acoupa, which
has a high protein diet, Gly is routed with minimal
isotopic modification to proteins (Webb et al. 2017).

The variations in adult TPs are more likely an indi-
cation of individual specialization within the C.
acoupa population and are similar to that found for
Caranx ignobilis by Papastamatiou et al. (2015).
Noteworthy are the low source AA δ15N values that
often coincided with high adult otolith TP, indicating
less productive marine environments based on the
bulk isotope trends at both RGN and Pará. Thus,
individual adult C. acoupa diet can change according
to coastal distance; this has also been observed in
freshwater fish, which displayed dietary variations
with lower TP in littoral areas than in pelagic areas
(Beaudoin et al. 1999, Svanbäck et al. 2015). Such
individual behavior can be a complex result of
resource availability, food−predation risk trade-offs,
spatial overlap of food webs as well as phenotypic
variations among individuals (Bolnick et al. 2003,
Matich et al. 2011) and can play an important role in
the persistence and adaptability of a population to
environmental disturbances (Bolnick et al. 2011,
Levin et al. 2015).

Future perspectives

This study showed that δ15N values of AAs in oto -
liths indicate significant differences between life
stages and various ecosystems that can be ex plained
relatively well with known nitrogen processes in the
Amazon area. However, changes in nitrogen cycling
and indicative δ15N values of AAs over various con-
nected habitats and time scales are not yet fully
understood, as was illustrated with RGN otoliths.
With a better understanding of such nitrogen cycling
changes and variations, δ15N values of AAs in otoliths
could also be used to derive migration patterns from
archaeological otoliths. Isotopic measurements of AAs

in ~100 000 yr old shells and bones indicate stable
preservation in biogenic carbonate structures (Ser-
ban et al. 1988, Edgar Hare et al. 1991) with low
probability of contamination. Thus, archaeological
fish otoliths could also potentially provide unique
insight into how trophic ecology and habitat connec-
tivity of fish populations differed during periods
before anthropogenic influences, and large environ-
mental and climate changes.
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