Skip to main content
Log in

Bedingungen für den Abbau von Ribonucleinsäure in Escherichia coli nach Zerstörung der cytoplasmatischen Membran durch Toluol

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

  1. 1.

    Der Abbau der RNS in toluolbehandelten stationären Zellen von Escherichia coli ist qualitativ und quantitativ sehr ähnlich dem Abbau in zellfreien Extrakten und isolierten Ribosomen. Er ist abhängig von pH-Wert und Temperatur.

  2. 2.

    In toluolbehandelten Zellen gibt es zwei Wege des RNS-Zerfalls, die für zellfreie Extrakte und Ribosomen bereits bekannt sind: In TrisÄDTA-Puffer entstehen 2′-3′-cyclische Phosphate, in Tris-Mg-Na2HPO4-Puffer 5′-Nucleotide und 5′-Nucleosiddiphosphate. Die Nucleotide werden weiter in Nucleoside und/oder Basen zerlegt.

  3. 3.

    Durch Versuche mit RNase I-losen Stämmen konnte gezeigt werden, daß im Tris-ÄDTA-Medium nur die RNase I wirksam ist. Der Abbau zu 5′-Phosphaten wird vermutlich wie in zellfreien Extrakten oder Ribosomen über eine Polynucleotidphosphorylase hervorgerufen.

  4. 4.

    Auch nach der Zerstörung der cytoplasmatischen Membran von E. coli durch Phenol, Phenyläthylalkohol, Isopropanol, Isoamylalkohol, Allylisothiocyanat, Polymyxin B oder Gefriertrocknung wird ein RNase I-bedingter RNS-Abbau beobachtet.

  5. 5.

    In toluolbehandelten Zellen von Alcaligenes faecalis läßt sich keine aktive RNase I nachweisen.

  6. 6.

    Der Mechanismus, der zur RNase I-Wirkung führt, wird diskutiert.

Summary

  1. 1.

    The degradation of RNA in toluenized stationary cells of Escherichia coli is quantitatively and qualitatively very similar to the degradation in cell-free extracts and isolated ribosomes. This depolymerization depends on pH and temperature.

  2. 2.

    In toluenized cells there are two possible routes of RNA-degradation as known in cell-free extracts and ribosomes: In Tris-EDTA buffer 2′,3′-cyclic nucleotides and in Tris-Mg-Na2HPO4 medium 5′-phosphates and 5′-diphosphates are found as degradation products. The nucleotides are further split into nucleosides and/or bases.

  3. 3.

    Using RNase I-less strains it could be verified that in Tris-EDTA buffer only RNase I is active in degrading ribosomes of toluenized cells. The depolymerization of ribosomal RNA into 5′-phosphates may be caused as in cell-free extracts and ribosomes by a polynucleotide phosphorylase.

  4. 4.

    After membrane injury in E. coli by phenol, phenethyl alcohol, isopropyl alcohol, isoamyl alcohol, allylisothiocyanate, polymyxin B and freeze drying RNase I-induced RNA-degradation is observed too.

  5. 5.

    In toluene treated cells of Alcaligenes faecalis no RNase I-activity is detectable.

  6. 6.

    The mode of action of RNase I in membrane damaged bacteria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Anderson, J. H., and C. E. Carter: Acid-soluble ribosomal ribonuclease of Escherichia coli. Biochemistry 4, 1102–1108 (1965).

    Google Scholar 

  • Anraku, Y.: A new cyclic phosphodiesterase having a 3′-nucleotidase activity from Escherichia coli B. I. Purification and some properties of the enzyme. II. Further studies on the substrate specificity and mode of action of the enzyme. J. biol. Chem. 239, 3412–3419 (1964).

    Google Scholar 

  • Cammak, K. A., and H. E. Wade: The sedimentation behaviour of ribonucleaseactive and-inactive ribosomes from bacteria. Biochem. J. 96, 671–680 (1965).

    Google Scholar 

  • Chargaff, E., and J. N. Davidson: The Nucleic Acids, Vol. II, p. 572. New York: Academic Press 1955.

    Google Scholar 

  • Davis, B. D., and D. S. Feingold: In: The Bacteria, Vol. IV, pp. 343–397. New York and London: Academic Press 1962.

    Google Scholar 

  • Gesteland, R. F.: Isolation and characterization of ribonuclease I mutants of Escherichia coli. J. molec. Biol. 16, 67–84 (1966).

    Google Scholar 

  • Harbers, E.: Die Nuklein-Säuren. Stuttgart: G. Thieme 1964.

    Google Scholar 

  • Jackson, R. W., and J. A. DeMoss: Effects of toluene on Escherichia coli. J. Bact. 90, 1420–1425 (1965).

    Google Scholar 

  • Judis, J.: Mechanism of action of phenolic disinfectants. IV. Effects on induction of and accessibility of substrate to β-galactosidase in Escherichia coli. J. Pharm. Sci. 54, 417–420 (1965).

    Google Scholar 

  • Kaplan, J. G.: The alteration of intracellular enzymes. II. The relation between the surface and biological activities of altering agents. J. gen. Physiol. 38, 197–211 (1954).

    Google Scholar 

  • Lehman, I. R.: The nucleases of Escherichia coli. In: Progress in Nucleic Acid. Research, Vol. II, pp. 83–123. New York and London: Academic Press 1963.

    Google Scholar 

  • Lester, G.: Inhibition of growth, synthesis and permeability in Neurospora crassa by phenethyl alcohol. J. Bact. 90, 29–37 (1965).

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Markham, R., and J. D. Smith: The structure of ribonucleic acids. 1. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem. J. 52, 552–557 (1952).

    Google Scholar 

  • Meynell, G. G., and E. Meynell: Theory and Practice in Experimental Bacteriology, p. 5. Cambridge 1965.

  • Neu, H. C., and L. A. Heppel: Some observations on the “latent” ribonuclease of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 51, 1267–1274 (1964).

    Google Scholar 

  • ——: The release of enzymes from Escherichia coli by osmotic shock and during formation of spheroplasts. J. biol. Chem. 240, 3685–3692 (1965).

    Google Scholar 

  • Newton, B. A.: The properties and mode of action of the polymyxins. Bact. Rev. 20, 15–27 (1956).

    Google Scholar 

  • Rotman, B.: Regulation of enzymatic activiti in the intact cell: The β-d-galactosidase of Escherichia coli. J. Bact. 76, 1–14 (1958).

    Google Scholar 

  • Singer, M. F., and G. Tolbert: Purification and properties of a potassiumactivated phosphodiesterase (RNase II) from Escherichia coli. Biochemistry 4, 1319–1330 (1965).

    Google Scholar 

  • Spahr, P. F.: Purification and properties of ribonuclease II from Escherichia coli. J. biol. Chem. 239, 3716–3726 (1964).

    Google Scholar 

  • —, and B. R. Hollingworth: Purification and mechanism of action of ribonuclease from Escherichia coli ribosomes. J. biol. Chem. 236, 823–831 (1961).

    Google Scholar 

  • Teuber, M.: Über die Zerstörung der cytoplasmatischen Membran von Saccharomyces cerevisiae durch methylisothiocyanathaltige Bodenentseuchungsmittel. Plant and Soil 25, 106–118 (1966).

    Google Scholar 

  • Wade, H. E.: The autodegradation of ribonucleoprotein in Escherichia coli. Biochem. J. 78, 457–472 (1961).

    Google Scholar 

  • —, and S. Lovett: Polynucleotide phosphorylase in ribosomes from Escherichia coli. Biochem. J. 81, 319–328 (1961).

    Google Scholar 

  • Wagman, J.: Evidence of cytoplasmic membrane injury in the drying of bacteria. J. Bact. 80, 558–564 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teuber, M. Bedingungen für den Abbau von Ribonucleinsäure in Escherichia coli nach Zerstörung der cytoplasmatischen Membran durch Toluol. Archiv. Mikrobiol. 55, 31–45 (1966). https://doi.org/10.1007/BF00409154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409154

Navigation