Skip to main content

Advertisement

Log in

Assessment of nonlinear trends and seasonal variations in global sea level using singular spectrum analysis and wavelet multiresolution analysis

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to apply the singular spectrum analysis (SSA), based on the phase space, and the wavelet multiresolution analysis (WMA), based on the frequency space, to the weekly time series of global sea level anomaly (GSLA) derived from satellite altimetry data over 1993–2013, in order to assess its nonlinear trends and its seasonal signals. The SSA results show that the GSLA time series is mainly dominated by a nonlinear trend explaining 89.89 % of the total GSLA variability, followed by annual and semi-annual signals with an explained variance of 9.15 and 0.32 %, respectively. For the annual signal, both methods give similar results. Its amplitude is less than 14 mm with an average of about 11 mm, and its minimum and maximum occur in April and October, respectively. The calculation of sea level trend, by both methods, is direct without removing the seasonal signals from the original GSLA time series as the most commonly used in the literature. The global sea level trend obtained from the WMA is about 2.52 ± 0.01 mm/year which is in good agreement with 2.94 ± 0.05 mm/year estimated from the SSA. Furthermore, the SSA method is most suitable for seasonal adjustment, and the WMA method is more useful for providing the different rates of sea level rise. Indeed, the WMA reveals that the global sea level has risen with the rate of 3.43 ± 0.01 mm/year from January/1993 to January/1998, 0.66 ± 0.01 mm/year from February/1998 to May/2000, 5.71 ± 0.03 mm/year from June/2000 to October/2003, and 1.57 ± 0.01 mm/year since January/2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baratta D, Cicioni G, Masulli F, Studer L (2003) Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Netw 16:375–387

    Article  Google Scholar 

  • Barbosa SM, Fernandes MJ, Silva ME (2005) Space-time analysis of sea level in the North-East Atlantic from T/P satellite altimetry. IAG Symp 129:248–253

    Google Scholar 

  • Barbosa SM, Silva ME, Fernandes MJ (2006) Wavelet analysis of the Lisbon and Gibraltar North Atlantic oscillation winter indices. Int J Climatol 26(5):581–593

    Article  Google Scholar 

  • Bastos A, Trigo RM, Barbosa SM (2013) Discrete wavelet analysis of the influence of the North Atlantic oscillation on Baltic Sea level. Tellus A 65:20077

    Article  Google Scholar 

  • Benzi R, Deidda R, Marrocu M (1997) Characterization of temperature and precipitation fields over Sardinia with principal component analysis and singular spectrum analysis. Int J Climatol 7(11):1231–1262

    Article  Google Scholar 

  • Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39(19):L19602

    Article  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145–173

    Article  Google Scholar 

  • Cazenave A, Remy F (2011) Sea level and climate: measurements and causes of changes. Wiley Interdiscip Rev Clim Chang 2(5):647–662

    Article  Google Scholar 

  • Cazenave A, Henry O, Munier S, Delcroix T, Gordon AL, Meyssignac B, Llovel W, Palanisamy H, Becker M (2012) Estimating ENSO influence on the global mean sea level, 1993-2010. Mar Geod 35:82–97

    Article  Google Scholar 

  • Cazenave A, Dieng HB, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea-level rise. Nat Clim Chang 4:358–361

    Article  Google Scholar 

  • Chaux C (2006) Analyse en ondelettes M-bandes en arbre dual; application à la restauration d’images. PhD Thesis at the University of Marne-la-Vallée, France

  • Chen X, Feng Y, Huang NE (2014) Global sea level trend during 1993-2012. Glob Planet Chang 112:26–32

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  • Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601

    Article  Google Scholar 

  • Corte-Real J, Qian B, Xu H (1998) Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation. Int J Climatol 18:619–635

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics (SIAM) USA, 357 p

  • Feng W, Zhong M (2015) Global sea level variations from altimetry, GRACE and Argo data over 2005-2014. Geod Geodyn 6(4):274–279

    Article  Google Scholar 

  • Flinchem EP, Jay DA (2000) An introduction to wavelet transform tidal analysis methods. Estuar Coast Shelf Sci 51:177–200

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):1–11

    Article  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5:239–257

    Google Scholar 

  • Holschneider M (1998) Wavelets: an analysis tool. Oxford University Press, USA 423 p

    Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic Oscillation and El Nino-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Geophys Res 108(D21):4677–4687

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Woodwoth PL, Grinsted A (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus A 57(2):183–193

    Article  Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012

    Article  Google Scholar 

  • Krepper CM, Garcia NO, Jones PD (2003) Interannual variability in Uruguay river basin. Int J Climatol 23(1):103–115

    Article  Google Scholar 

  • Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36(4):L04608

    Article  Google Scholar 

  • Leuliette EW, Scharroo R (2010) Integrating Jason-2 into a multiple-altimeter climate data record. Mar Geod 33(S1):504e17

    Google Scholar 

  • Lionello P (2012) The climate of the Mediterranean region: from the past to the future. Elsevier edition, p 502

  • Llovel W, Becker M, Cazenave A, Jevrejeva S, Alkama R, Decharme B (2011) Terrestrial waters and sea level variations on interannual time scale. Glob Planet Chang 75(1–2):76–82

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal 11(7):674–693

    Article  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing,, second edn. Academic Press, USA, p. 637

    Google Scholar 

  • Meyer Y (1992) Les Ondelettes : Algorithmes et Applications. Armand Colin, Paris, p. 172

    Google Scholar 

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446

    Article  Google Scholar 

  • Ngo-Duc T, Laval K, Polcher J, Cazenave A (2005) Contribution of continental water to sea level variations during the 1997–1998 El Niño-Southern Oscillation event: comparison between Atmospheric Model Intercomparison Project simulations and TOPEX/Poseidon satellite data. J Geophys Res 110:D09103

    Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(5985):1517–1520

    Article  Google Scholar 

  • Paegle JN, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128(3):837–850

    Article  Google Scholar 

  • Pfeffer WT (2011) Land ice and sea level rise: a thirty-year perspective. Oceanography 24(2):94–111

    Article  Google Scholar 

  • Rangelova EV, Grebenitcharsky RS, Sideris MG (2006) Identifying sea-level rates by a wavelet-based multiresolution analysis of altimetry and tide gauge data. Bureau Gravimétrique International & International Geoid Service Joint Bulletin, Newton’s Bulletin 3:104–115

  • Robertson AW, Mechoso CR (2003) Circulation regimes and low-frequency oscillations in the South Pacific sector. Mon Weather Rev 131:1566–1576

    Article  Google Scholar 

  • Rodo X, Pascual M, Fuchs G, Faruque ASG (2002) ENSO and cholera: a nonstationary link related to climate change ? Proc Natl Acad Sci U S A 99(20):12901–12906

    Article  Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35:395–424

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy, chaotic signals. Phys D 58:95–126

    Article  Google Scholar 

  • Vautard R, Plaut G, Wang R, Brunet G (1999) Seasonal prediction of North American surface air temperatures using space-time principal components. J Clim 12(2):380–394

    Article  Google Scholar 

  • Wainer I, Venegas SA (2002) South Atlantic multidecadal variability in the climatic system model. J Clim 15(12):1408–1420

    Article  Google Scholar 

  • Yu JY, Mechoso CR (2001) A coupled atmosphere-ocean GCM study of the ENSO cycle. J Clim 14(10):2329–2350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Khelifa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifa, S., Gourine, B., Rami, A. et al. Assessment of nonlinear trends and seasonal variations in global sea level using singular spectrum analysis and wavelet multiresolution analysis. Arab J Geosci 9, 560 (2016). https://doi.org/10.1007/s12517-016-2584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2584-6

Keywords

Navigation