Skip to main content
Log in

Non-Poisson probabilistic seismic hazard assessment

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The development of the new seismic hazard map of metropolitan Tehran is based on probabilistic seismic hazard computation using the non-Poisson recurrence time model. For this model, two maps have been prepared to indicate the earthquake hazard of the region in the form of iso-acceleration contour lines. They display the non-Poisson probabilistic estimates of peak ground accelerations over bedrock for 10 and 63 % probability of exceedance in 50 years. To carry out the non-Poisson seismic hazard analysis, appropriate distributions of interoccurrence times of earthquakes were used for the seismotectonic provinces which the study region is located and then the renewal process was applied. In order to calculate the seismic hazard for different return periods in the probabilistic procedure, the study area encompassed by the 49.5–54.5°E longitudes and 34–37°N latitudes was divided into 0.1° intervals generating 1,350 grid points. PGA values for this region are estimated to be 0.30–0.32 and 0.16–0.17 g for 10 and 63 % probability of exceedance, respectively, in 50 years for bedrock condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aki K (1956) Some problems in statistical seismology. Zisin 8:205–228

    Google Scholar 

  • Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3(1):1–53. doi:10.1007/s10518-005-0183-0

    Article  Google Scholar 

  • Anagnos T, Kiremidjian AS (1984) Stochastic time-predictable model for earthquake occurrences. Bull Seismol Soc Am 74(6):2593–2611

    Google Scholar 

  • Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501

    Article  Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophys J Int 115(1):41–61. doi:10.1111/j.1365-246X.1993. tb05587.x

    Article  Google Scholar 

  • Berberian M (1981) Active faulting and tectonics of Iran. In: Gupta HK, Delany FM (eds) Zagros, Hindu Kush, Himalaya: geodynamics evaluation. American Geophysical Union, Washington D.C., Geodynamic Ser. 3, 33–69, doi: 10.1029/GD003p0033

  • Berberian M (1983) Contribution to the seismotectonics of Iran (part IV). Geol Surv Iran Rep 52

  • Berberian M, Qorashi M (1988) Iranian cities in devilish circle of earthquake, Adinneh, 31, 62–65 (in Persian). Monstrous

  • Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seismol Soc Am 89(1):120–139

    Google Scholar 

  • Copley A, Jackson J (2006) Active tectonics of the Turkish-Iranian Plateau. Tectonics 25:TC6006. doi:10.1029/2005TC001906

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Corral A (2004) Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys Rev Lett 92:108501

    Article  Google Scholar 

  • Der Kiureghian A, Ang AH-S (1977) A fault rupture model for seismic risk analysis. Bull Seismol Soc Am 67(4):1173–1194

    Google Scholar 

  • Gao M (1988) Discussion on annual occurrence rates. Recent Dev World Seismol 1:1–5

    Google Scholar 

  • Ghodrati Amiri G, Motamed R, Rabet Es-haghi H (2003) Seismic hazard assessment of metropolitan Tehran, Iran. J Earthq Eng 7(3):347–372. doi:10.1080/13632460309350453

    Article  Google Scholar 

  • Hasumi T, Akimoto T, Aizawa Y (2009) The Weibull-log Weibull distribution for interoccurrence times of earthquakes. Physica A 388:491–498

    Article  Google Scholar 

  • Hasumi T, Chen C, Akimoto T, Aizawa Y (2010) The Weibull-log Weibull transition of interoccurrence time for synthetic and natural earthquakes. Tectonophysics 485B:9–16

    Article  Google Scholar 

  • He H, Zhang Y, Zhou B (1994) Delineation of potential seismic sources in continent of China. In: Proc. Workshop on Implementation of GSHAP in Central and Southern Asia, Beijing, China, pp 169–183

  • Jackson J, McKenzie D (1984) Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J Roy Astron Soc 77(1):185–264. doi:10.1111/j.1365-246X.1984.tb01931.x

    Article  Google Scholar 

  • Jackson J, McKenzie D (1988) The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and the Middle East. Geophys J Int 93(1):45–73. doi:10.1111/j.1365-246X.1988.tb01387.x

    Article  Google Scholar 

  • Jackson J, Haines J, Holt W (1995) The accommodation of Arabia–Eurasia plate convergence in Iran. J Geophys Res 100(B8):15205–15219. doi:10.1029/95JB01294

    Article  Google Scholar 

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148(2):214–245. doi:10.1046/j.1365- 246X.2002.01588.x

    Google Scholar 

  • Kayabali K (2002) Modeling of seismic hazard for Turkey using the recent neotectonic data. Eng Geol 63(3–4):221–232. doi:10.1016/S0013-7952(01)00082-5

    Article  Google Scholar 

  • Khodabin M, Ahmadabadi A (2010) Some properties of generalized gamma distribution. Math Sci QJ 4:9–28

    Google Scholar 

  • Kijko A, Funk CW (1994) The assessment of seismic hazards in mines. J S Afr Inst Min Metall 179–185

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82(1):120–134

    Google Scholar 

  • Kiremidjian AS, Anagnos T (1984) Stochastic slip-predictable model for earthquake occurrences. Bull Seismol Soc Am 74(2):739–755

    Google Scholar 

  • Lennartz S, Livina VN, Bunde A, Havlin S (2008) Long-term memory in earthquakes and the distribution of interoccurrence times. Europhys Lett 81:69001

    Article  Google Scholar 

  • Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model for recurrent earthquakes. Bull Seismol Soc Am 92:2233–2250

    Article  Google Scholar 

  • Mirzaei N (1997) Seismic zoning of Iran. Ph.D. dissertation in Geophysics, Beijing: Institute of Geophysics, State Seismological Bureau

  • Mirzaei N, Gao M, Chen YT (1997a) Seismicity in major seismotectonic provinces of Iran. Earthq Res China 11(4):35–360

    Google Scholar 

  • Mirzaei N, Gao M, Chen YT, Wang J (1997b) A uniform catalog of earthquakes for seismic hazard assessment in Iran. Acta Seismol Sin 10:713–726

    Article  Google Scholar 

  • Mirzaei N, Gao M, Chen YT (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J Earthq Predict Res 7:465–495

    Google Scholar 

  • Mirzaei N, Gao M, Chen YT (1999) Delineation of potential seismic sources for seismic zoning of Iran. J Seismol 3(1):17–30. doi:10.1023/A:1009737719013

    Article  Google Scholar 

  • Nowroozi AA (1971) Seismotectonics of the Persian plateau, eastern Turkey, Caucasus, and Hindu–Kush regions. Bull Seismol Soc Am 61(2):317–341

    Google Scholar 

  • Nowroozi AA (1972) Focal mechanism of earthquakes in Persia, Turkey, West Pakistan, and Afghanistan and plate tectonics of the Middle East. Bull Seismol Soc Am 62(3):823–850

    Google Scholar 

  • Nowroozi AA (1976) Seismotectonic provinces of Iran. Bull Seismol Soc Am 66(4):1249–1276

    Google Scholar 

  • Priestley K, Baker C, Jackson J (1994) Implications of earthquake focal mechanism data for the active tectonics of the south Caspian Basin and surrounding regions. Geophys J Int 118(1):111–141. doi:10.1111/j.1365- 246X.1994.tb04679.x

    Article  Google Scholar 

  • Ross SM (1983) Stochastic processes. Wiley, New York

    Google Scholar 

  • Shah HC, Movassate M, Zsutty TC (1976) Seismic risk analysis for California state water project. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Rep. 22

  • Shi Z, Yan J, Gao M (1992) Research on the principles and methodology of seismic zonation: results of the trials in North China. Acta Seismol Sin 5(2):305–314. doi:10.1007/BF02651697

    Article  Google Scholar 

  • Shoja-Taheri J, Niazi M (1981) Seismicity of the Iranian plateau and bordering regions. Bull Seismol Soc Am 71(2):477–489

    Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Bull Am Assoc Petrol Geol 52(7):1229–1258

    Google Scholar 

  • Stöcklin J (1974) Northern Iran: Alborz Mountains. Geological Society, London, Special Publications 4:213–234. doi:10.1144/GSL.SP.2005.004.01.12

  • Student HH (1997) Assessing the seismic hazard in Charleston south Carolina: comparisons among statistical models. M.Sc. dissertation in Geophysics, Blacksburg, Virginia: Polytechnic Institute and State University

  • Tahernia N, Khodabin M, Mirzaeai N (2011) Mixed model for interoccurrence times of earthquakes based on the expectation-maximization algorithm. Acta Geophys 59(5):872–890. doi:10.2478/s11600-011-0028-y

    Article  Google Scholar 

  • Tahernia N, Khodabin M, Mirzaeai N, Eskandari-Ghadi M (2012) Statistical models of interoccurrence times of Iranian earthquakes on the basis of information criteria. J Earth Syst Sci 121(2):463–474

    Article  Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys J Int 156(3):506–526. doi:10.1111/j.1365-246X.2004.02092.x

    Article  Google Scholar 

  • Tatar M, Hatzfeld D, Ghafory-Ashtiany M (2004) Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophys J Int 156(2):255–266. doi:10.1111/j.1365-246X.2003.02145.x

    Article  Google Scholar 

  • Vere-Jones D (1970) Stochastic models for earthquake occurrence. J Roy Stat Soc B (Methodol) 32(1):1–62

    Google Scholar 

  • Walker R, Jackson J (2004) Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics 23:TC5010. doi:10.1029/2003TC001529

    Article  Google Scholar 

  • Yan J (1993) Principals and methods to determine spatial distribution function. In: Proc. PRC/USSR Workshop on Geodynamics and Seismic and Risk Assessment, Beijing, China, pp 159–167

  • Ye H, Zhou Y, Zhou Q, Yang W, Chen G, Hao C (1993) Study on potential seismic sources for seismic zonation and engineering seismic hazard analysis in continental areas. In: Continental Earthquakes, IASPEI Publication Series for the IDNDR 3, 473–478

  • Zhang Y (1993) Principles and methods on delineation of potential earthquake source area. In: Proc. PRC/USSR Workshop on Geodynamics and Seismic Risk Assessment, Beijing, China, pp 201–207

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Tahernia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahernia, N., Khodabin, M. & Mirzaei, N. Non-Poisson probabilistic seismic hazard assessment. Arab J Geosci 7, 3259–3269 (2014). https://doi.org/10.1007/s12517-013-0930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0930-5

Keywords

Navigation