Skip to main content
Log in

Growth and photosynthetic characteristics of several Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions under a constant light-temperature regime

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Numerous detailed studies have been made of climatically and environmentally influenced macroalgal geographic distribution patterns. However, so far, there have been only a few intrinsic investigations of the geographic distributions of microalgae. In order to investigate the physiological differences among geographically different microalgal strains, six Cosmarium strains were collected from various climate areas and studied. They were grown under a constant light-temperature regime (16°C and 30 μmol photons m−2 s−1) and nutrient supply. The arctic representative, C. crenatum var. boldtianum, and the typical tropical desmid, C. beatum, behaved like algae adapted to high light intensities, as judged from the distinctly high values of photosynthetic capacity and saturating irradiance measured, in accordance with the high solar radiation prevailing in their sampling areas. The arctic taxon appeared more optimally suited to the low cultivation temperature, as evidenced by the relatively high values of growth rates, maximum quantum yield and photosynthetic efficiency measured. The cosmopolitan taxa, C. meneghinii and C. punctulatum var. subpunctulatum, exhibited a high maximum quantum yield and photosynthetic efficiency concomitantly during growth, which explained their ubiquitous distribution. Nevertheless, two clones belonging to C. punctulatum var. subpunctulatum, collected from polar and mountainous tropical regions, differed significantly with regard to cell volume, growth rates, surface area to volume ratio and photosynthetic parameters. The physiological differences between the Cosmarium strains were in accordance with their geographic origin; they are discussed in detail in this study. Moreover, these differences were maintained despite the long-term cultivation under identical and constant laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

S/V:

Surface area to volume ratio

P–I:

Photosynthesis-irradiance curve

PSII:

Photosystem II

rETRmax :

Maximum relative electron transport rate

Ik :

Saturating irradiance

α:

Slope of P–I curve, photosynthetic efficiency

Fv/Fm:

Maximum potential quantum yield of PSII

PFR:

Photon flux (fluence) rate

μ:

Growth rate

References

  • Abdelahad N, Bazzichelli G, D’Archino R (2003) Catalogo delle Desmidiacee (Chorophyta, Zygnematophyceae) segnalate in Italia. A checklist of desmids (Chlorophyta, Zygnematophyceae) reported in Italy. Accademia Nazionale delle Scienze 11:1–102

    Google Scholar 

  • Agarkar DS (1971) Contribution of the desmids of Givalior Madhya Pradesh (India) II. Phykos 10:54–70

    Google Scholar 

  • Allan N (1986) Accessibility and altitudinal zonation models of mountains. Mt Res Dev 6:185–194

    Article  Google Scholar 

  • Alvárez Cobelas M (1984) Catálogo de las algas continentales españolas. III. Zygophyceae Widder 1960. Collect Bot (Barcelona) 15:17–37

    Google Scholar 

  • Amsler CD, Neushul M (1991) Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J Phycol 27:26–34. doi:10.1111/j.0022-3646.1991.00026.x

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  PubMed  CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schumann R, Schubert H, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86. doi:10.1080/09670260701711376

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bodri L, Čermák V (1995) Climate changes of the last millennium inferred from borehole temperatures: results from the Czech Republic—part I. Global Planetary Change 11:111–125. doi:10.1016/s0921-8181(99)00044-2

    Article  Google Scholar 

  • Boney AD (1982) Living in mucilage: the saccoderm desmid Mesotaenium. Glasgow Nat 20:237–243

    Google Scholar 

  • Bowman F (1961) Introduction to elliptic functions with applications. Dover Publications, New York

    Google Scholar 

  • Broady PA, Ohtani S, Ingerfeld M (1997) A comparison of strains of Xanthonema (= Heterothrix, Tribonematales, Xanthophyceae) from Antarctica, Europe, and New Zealand. Phycologia 36:164–171

    Article  Google Scholar 

  • Brook AJ (2001) The drought-resistant desmid, Cosmarium pericymatium Nordstedt, and a description of the new var. corrugatum. Quekett J Microscopy 39:127–132

    Google Scholar 

  • Brook AJ, Johnson LR (2003) Order Zygnematales. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. British Phycological Society, Natural History Museum, Cambridge University Press, Cambridge, pp 479–593

    Google Scholar 

  • Chapman ARO, Lindley JE (1980) Seasonal growth of Laminaria solidungula in the Canadian High Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol 57:1–5. doi:10.1007/BF00420961

    Article  CAS  Google Scholar 

  • Coesel PFM (1994) On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algol Stud 73:65–74

    Google Scholar 

  • Coesel PFM (1996) Biogeography of desmids. Hydrobiologia 336:41–53

    Article  Google Scholar 

  • Coesel PFM (2003) Closterium karnakense spec. nov. and the issue of ecotypic differentiation in desmids. Biologia, Bratislava 58:639–643

    Google Scholar 

  • Coesel PFM, Kooijman-Van Blokland H (1991) Seasonality of planktonic desmid species in lake Maarsseveen (the Netherlands) related to experimentally determined growth rates in a temperature-light gradient. Verh Int Ver Limnol 24:763–767

    Google Scholar 

  • Coesel PFM, Meesters KJ (2007) Desmids of the Lowlands. KNNV Publishing, Zeist

    Google Scholar 

  • Coesel PFM, Wardenaar K (1990) Growth responses of planktonic desmid species in a temperature-light gradient. Freshw Biol 23:551–560. doi:10.1111/j.1365-2427.1990.tb00294.x

    Article  Google Scholar 

  • Coesel PFM, Wardenaar K (1994) Light-limited growth and photosynthetic characteristics of two planktonic desmid species. Freshw Biol 31:221–226. doi:10.1111/j.1365-2427.1994.tb00856.x/pdf

    Article  Google Scholar 

  • Coesel PFM, Ngearnpat N, Peerapornisal Y (2009) Some new or otherwise interesting desmid taxa from Thailand. Alg Studies 131:15–22. doi:10.1127/1864-1318/2009/0131-0015

    Article  Google Scholar 

  • Compère P (1977) Algues de la région du Lac Tchad VII–Chlorophycophytes (3e partie: Desmidiées). Sér Hydrobiol 11:77–177

    Google Scholar 

  • Couté A, Rousselin G (1975) Contribution à l’étude des algues d’eau douce du moyen Niger (Mali). Bull Mus Hist Nat (Paris) 277:73–175

    Google Scholar 

  • Fogg CE (1975) Algal cultures and phytoplankton ecology. University of Wisconsin Press, Madison

    Google Scholar 

  • Freire-Nordi CS, Vieira AAH, Nascimento OR (1998) Selective permeability of the extracellular envelope of the microalga Spondylosium panduriforme (Chlorophyceae) as revealed by electron paramagnetic resonance. J Phycol 34:631–637. doi:10.1046/j.1529-8817.1998.340631.x

    Article  CAS  Google Scholar 

  • Freire-Nordi CS, Vieira AAH, Nakaie CR, Nascimento OR (2006) Effect of polysaccharide capsule of the microalgae Staurastrum iversenii var. americanum on diffusion of charged and uncharged molecules, using EPR technique. Braz J Phys 36:75–82. doi:10.1590/S0103-97332006000100013

    Article  CAS  Google Scholar 

  • Gerrath JF (1979) Polymorphism in the desmid Cosmarium taxichondrum Lundell. Br Phycol J 14:211–217. doi:10.1080/00071617900650231

    Article  Google Scholar 

  • Gómez I (2001) Ecophysiology of Antarctic macroalgae: effects of environmental light conditions on photosynthetic metabolism. Rev Chil Hist Nat 74:251–271. doi:10.4067/S0716-078X2001000200004

    Article  Google Scholar 

  • Gons HJ, Mur LR (1980) Energy requirements for growth and maintenance of Scenedesmus protuberans Fritsch in light-limited continuous cultures. Arch Microbiol 125:9–17. doi:10.1007/BF00403192

    Article  CAS  Google Scholar 

  • Gontcharov AA, Melkonian M (2008) In search of monophyletic taxa in the family Desmidiaceae (Zygnematophyceae, Viridiplantae): the genus Cosmarium. Am J Bot 95:1079–1095. doi:10.3732/ajb.0800046

    Article  PubMed  CAS  Google Scholar 

  • Gontcharov AA, Melkonian M (2011) A study of conflict between molecular phylogeny and taxonomy in the Desmidiaceae (Streptophyta, Viridiplante): analyses of 291 rbcL sequences. Protist 162:253–267. doi:10.1016/j.protis.2010.08.003

    Article  PubMed  Google Scholar 

  • Gorton HL, Wiliams WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73:611–620. doi:10.1562/0031-8655(2001)0730611TLEACO2.0.CO2

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 289–311

    Google Scholar 

  • Guillard RRL, Kilham P (1977) The ecology of marine planktonic diatoms. In: Werner D (ed) The biology of diatoms. Blackwell Scientific Publications, Oxford, pp 372–469

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369. doi:10.1007/s002270050329

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine macroalgae. In: Larkum AWD, Douglas SE, Raven JA (eds) Advances in photosynthesis and respiration. Photosynthesis in algae, vol 14. Kluwer Academic Publishers, Dordrecht, pp 413–435

    Google Scholar 

  • Hillebrand H, Dürselen CD, Kirshtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. doi:10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  • Hirano M (1966) Freshwater algae from northeastern part of Afghanistan. Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush 8: 15–54

  • Höbenreich C (2007) Expedition Franz Josef Land. In der Spur der Entdecker nach Norden. Verlag Frederking & Taler, München

  • Hulburt EM, Guillard RRL (1968) The relationship of the distribution of the diatom Skeletonema tropicum to temperature. Ecology 49:337–339

    Article  Google Scholar 

  • Ichimura T (1985) Geographical distribution and isolating mechanisms in the Closterium ehrenbergii species complex (Chlorophyceae, Closteriaceae). In: Hara H (ed) Origin and evolution of diversity in plants and plant communities. Academia Scientific Book Inc., Tokyo, pp 295–303

    Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Kasai F, Ichimura T (1986) Morphological variabilities of three closely related mating groups of Closterium ehrenbergii Meneghinii (Conjugatophyceae). J Phycol 22:158–168. doi:10.1111/j.1529-8817.1986.tb04159.x

    Google Scholar 

  • Kasai F, Ichimura T (1990) Temperature optima of three closely related mating groups of the Closterium ehrenbergii (Chlorophyta) species complex. Phycologia 29:396–402. doi:10.2216/i0031-8884-29-4-396.1

    Article  Google Scholar 

  • Kattner E, Lorch D, Weber A (1977) Die Bausteine der Zellwand und der Gallerte eines Stammes von Netrium digitus (Ehrbg.) Itzigs. & Rothe. Mitt Inst Allg Bot Hamburg 15:33–39

    CAS  Google Scholar 

  • Kira T (1977) A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tiixen R (eds) Vegetation science and environmental protection. Maruzen Co. Ltd., Tokyo, pp 21–30

    Google Scholar 

  • Komárek J, Nedbalová L (2007) Green cryosestic algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 321–342

    Chapter  Google Scholar 

  • Kouwets FAC (1987) Desmids from the Auvergne (France). Hydrobiologia 146:193–263

    Article  Google Scholar 

  • Krhoda GO (1992) The hydrology and function of wetlands. In: Crafter SA, Njuguna SG, Howard GW (eds) Wetlands of Kenya. Proceedings of the KWWG Seminar on Wetlands of Kenya. National Museums of Kenya, Nairobi, pp 13–22

    Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, New York

    Book  Google Scholar 

  • Lüning K (1981) Light. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. University of California Press, Berkeley, Los Angeles, pp 326–355

    Google Scholar 

  • Lüning K (1990) Seaweeds: their environment biogeography and ecophysiology. Wiley-Interscience, New York

    Google Scholar 

  • Lüning K, Neushul M (1978) Light and temperature demands for growth and reproduction of laminarian gametophytes in southern and central California. Mar Biol 45:297–309. doi:10.1007/BF00391816

    Article  Google Scholar 

  • Manhart JR, McCourt RM (1992) Molecular data and species concepts in the algae. J Phycol 28:730–737. doi:10.1111/j.0022-3646.1992.00730.x

    Article  Google Scholar 

  • McKnight TL, Hess D (2001) Physical geography: a landscape appreciation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Moen A (1998) Nasjonalatlas for Norge: Vegetasjon. Statens Kartverk, Hønefoss

    Google Scholar 

  • Mosser JL, Mosser AG, Brock TD (1977) Photosynthesis in the snow: the alga Chlamydomonas nivalis (Chlorophyceae). J Phycol 13:22–27. doi:10.1111/j.1529-8817.1977.tb02881.x

    Google Scholar 

  • Palamar-Mordvintseva GM (1982) Opredelitelj presnovodnih vodoroslei SSSR. Zelenye vodorosli, klass konjugaty, porjadok desmidievye. Nauka Leningradskoe otdelenie, Leningrad

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Prescott GW, Croasdale HT, Vinyard WC, CEdeM Bicudo (1981) A synopsis of North American desmids. Desmidiaceae: Placodermae, sec 3. University of Nebraska Press, Lincoln, London

    Google Scholar 

  • Prokop A, Řičica J (1968) Chlorella pyrenoidosa 7–11-05 in batch and homogeneous continuous culture under autotrophic conditions. 1. Growth characteristics of the culture. Fol Microbiol 13:353–361

    Article  CAS  Google Scholar 

  • Przybylak R (2003) The climate of the Arctic. Kluwer Academic Publishers, Norwell

    Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Article  CAS  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Rich F (1935) Contributions to our knowledge of the freshwater algae of Africa. Algae from a pan in southern Rhodesia. Trans R Soc S.-Africa 23:107–160

    Article  Google Scholar 

  • Rino JA (1972) Contribuição para o conhecimento das algas de água doce de Moçambique III. Revista Ci Biol, Fac Ci Univ Loucenço Marques A5:121–264

    Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322. doi:10.1007/s11120-006-9055-y

    Article  PubMed  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, van de Poll WH, Gruber A (2005) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environment 28:466–479. doi:10.1111/j.1365-3040.2005.01288.x

    Article  Google Scholar 

  • Roth E (1981) Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrol 43:34–62. doi:10.1007/BF02502471

    Article  Google Scholar 

  • Shephard KL (1987) Evaporation of water from the mucilage of a gelatinous algal community. Br Phycol J 22:181–185. doi:10.1080/00071618700650221

    Article  Google Scholar 

  • Soeder C, Müller H, Payer H, Schulle H (1971) Mineral nutrition of planktonic algae: some considerations and experiments. Mitt Int Ver Limnol 19:39–58

    Google Scholar 

  • Spijkerman E, Coesel PFM (1996a) Phosphorus uptake and growth kinetics of two planktonic desmid species. Eur J Phycol 31:53–60

    Article  Google Scholar 

  • Spijkerman E, Coesel PFM (1996b) Competition for phosphorus between planktonic desmid species in continuous flow culture. J Phycol 32:939–948. doi:10.1111/j.0022-3646.1996.00939.x

    Article  Google Scholar 

  • Spijkerman E, Coesel PFM (1998) Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes. Hydrobiologia 370:109–116. doi:10.1023/A:1017030817750

    Article  Google Scholar 

  • Spijkerman E, Garcia-Mendoza E, Matthijs HCP, Van Hunnik E, Coesel PFM (2004) Negative effects of P-buffering and pH on photosynthetic activity of planktonic desmid species. Photosynthetica 42:49–57. doi:10.1023/B:PHOT.0000040569.17719.2a

    Article  CAS  Google Scholar 

  • Spijkerman E, Maberly SC, Coesel PFM (2005) Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution. Can J Bot 83:850–858. doi:10.1139/B05-069

    Article  CAS  Google Scholar 

  • Stadel C (1990) Altitudinal belts in the tropical Andes: their ecology and human utilization. In: Martinson TL (ed) Yearbook of the conference of Latin American geographers 17/18. Auburn, Alabama, pp 45–60

    Google Scholar 

  • Stibal M, Elster J, Šabacká M, Kaštovská K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273. doi:10.1111/j.1574-6941.2006.00264.x

    Article  PubMed  CAS  Google Scholar 

  • Suxena MR (1979) Algae and testacea from high altitudes of Himalayas–I. Hydrobiologia 65:107–128. doi:10.1007/BF00017416

    Article  Google Scholar 

  • Tassigny M (1971) Action du calcium sur la croissance de Desmidiées axeniques. Mitt Int Ver Limnol 19:292–313

    Google Scholar 

  • Tollefsrud J, Tjørve E, Hermansen P (1991) Perler i Norsk Natur. Aschehoug, Oslo

    Google Scholar 

  • Umbreit A (2009) Spitsbergen–Svalbard, Franz Josef Land, Jan Mayen. Bradt Travel Guides Ltd., Bucks

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitt Int Ver Limnol 9:1–39

    Google Scholar 

  • West W, West GS (1895) A contribution to our knowledge of the freshwater algae of Madagascar. Trans Linnean Soc London Bot 5:41–90

    Article  Google Scholar 

  • West W, West GS (1905) A monograph of the British desmidiaceae, 2nd edn. Ray Society, London

    Google Scholar 

  • West W, West GS (1908) A monograph of the British desmidiaceae, 3rd edn. Ray Society, London

    Google Scholar 

  • West W, West GS (1912) A monograph of the British desmidiaceae, 4th edn. Ray Society, London

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22. doi:10.1016/0022-0981(96)02576-2

    Article  Google Scholar 

  • Wiencke C (1996) Recent advances in the investigation of Antarctic macroalgae. Polar Biol 16:231–240. doi:10.1007/s003000050049

    Article  Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87

    Google Scholar 

  • Williamson DB (1994) A contribution to knowledge of the desmid flora of South Africa and the adjoining states of Ciskei and Swaziland. Arch Hydrobiol Suppl 99:415–487

    Google Scholar 

  • Williamson DB (2004) Some desmids from southern Chile. Alg Studies 112:105–121. doi:10.1127/1864-1318/2004/0112-0105

    Article  Google Scholar 

  • Wood AM, Leatham T (1992) The species concept in phytoplankton ecology. J Phycol 28:723–729. doi:10.1111/j.0022-3646.1992.00723.x

    Article  Google Scholar 

  • Yeh PZ, Gibor A (1970) Growth patterns and motility of Spirogyra spp. and Closterium acerosum. J Phycol 6:44–48. doi:10.1111/j.1529-8817.1970.tb02355.x

    Google Scholar 

Download references

Acknowledgments

The first author was supported by a grant from the Deutscher Akademischer Austausch Dienst (DAAD). Dr. D. Stojiljković is acknowledged for valuable lessons in statistics and SPSS software. Dr. F. A. C Kouwets is kindly acknowledged for the critical reading of the manuscript and the fruitful discussion concerning the taxonomic attributes of the Cosmarium taxa studied. M. S. thanks Prof. Dr. L. Kies for his valuable support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Stamenković.

Additional information

Handling Editor: Bas W. Ibelings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamenković, M., Hanelt, D. Growth and photosynthetic characteristics of several Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions under a constant light-temperature regime. Aquat Ecol 45, 455–472 (2011). https://doi.org/10.1007/s10452-011-9367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-011-9367-7

Keywords

Navigation