Skip to main content
Log in

Agricultural pest monitoring using fluorescence lidar techniques

Feasibility study

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The fluorescence of different types of planthopper (Hemiptera) and moth (Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Oerke, H.W. Dehne, F. Schönbeck, A. Weber, Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops (Elsevier Science, Amsterdam, 1994)

    Google Scholar 

  2. M. Joron, P.M. Brakefield, Nature 424, 191 (2003)

    Article  ADS  Google Scholar 

  3. T.R.E. Southwood, D.P.A. Henderson, in Ecological Methods. 3 edn. (Wiley-Blackwell, New York 2000)

    Google Scholar 

  4. J.W. Chapman, A.D. Smith, I.P. Woiwod, D.R. Reynolds, J.R. Riley, Comput. Electron. Agric. 35, 95 (2002)

    Article  Google Scholar 

  5. J.W. Chapman, D.R. Reynolds, A.D. Smith, Bioscience 53, 503 (2003)

    Article  Google Scholar 

  6. J.L. Osborne, I.H. Williams, N.L. Carreck, G.M. Poppy, J.R. Riley, A.D. Smith, D.R. Reynolds, A.S. Edwards, Acta Hortic 437, 159 (1997)

    Google Scholar 

  7. A. Cork, S.N. Alam, F.M.A. Rouf, N.S. Talekar, Bull. Entomol. Res., 93, 107 (2003)

    Article  Google Scholar 

  8. O.B. Kovanci, C. Schal, J.F. Walgenbach, G.G. Kennedy, Phytoparasitica 34, 252 (2006)

    Article  Google Scholar 

  9. J.R. Riley, P. Valeur, A.D. Smith, D.R. Reynolds, G.M. Poppy, C. Löfstedt, J. Insect Behav. 11, 287 (1998)

    Article  Google Scholar 

  10. TR-SET-098, Laser Based Stand-off Detection of Biological Agents (NATO Research and Technology Organisation, Brussels, 2010), p. 82. ISBN 978-92-837-0086-9

    Google Scholar 

  11. G. Cecchi, L. Pantani, in Igarss ’94—1994 International Geoscience and Remote Sensing Symposium, vols. 1–4, p. 979 (1994)

    Chapter  Google Scholar 

  12. J.A. Shaw, N.L. Seldomridge, D.L. Dunkle, P.W. Nugent, L.H. Spangler, J.J. Bromenshenk, C.B. Henderson, J.H. Churnside, J.J. Wilson, Opt. Express 13, 5853 (2005)

    Article  ADS  Google Scholar 

  13. D.S. Hoffman, A.R. Nehrir, K.S. Repasky, J.A. Shaw, J.L. Carlsten, Appl. Opt. 46, 3007 (2007)

    Article  ADS  Google Scholar 

  14. E. Burris, J.B. Graves, B.R. Leonard, C.A. White, Fla. Entomol. 77, 454 (1994)

    Article  Google Scholar 

  15. J.Y. Sun, Entomol. Knowl. 35, 55 (1998)

    Google Scholar 

  16. K.M. Wu, G. Xu, Y.Y. Guo, Acta Ecol. Sin. 25, 337 (1998)

    Google Scholar 

  17. X.X. Zhang, Z.Q. Zheng, J.Y. Xie, X.Y. Mi, Plant Prot. Technol. Ext. 18, 3 (1998)

    Google Scholar 

  18. C.F. Sheng, H.T. Wang, S.Y. Sheng, L.D. Gao, W.J. Xuan, Entomol. Knowl. 40, 289 (2003)

    Google Scholar 

  19. P. Weibring, H. Edner, S. Svanberg, Appl. Opt. 42, 3583 (2003)

    Article  ADS  Google Scholar 

  20. M. Brydegaard, Z.G. Guan, M. Wellenreuther, S. Svanberg, Appl. Opt. 48, 5668 (2009)

    Article  ADS  Google Scholar 

  21. Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E.I. Svensson, S. Svanberg, Appl. Opt. 49, 5133 (2010)

    Article  ADS  Google Scholar 

  22. M. Brydegaard, P. Lundin, Z.G. Guan, A. Runemark, S. Åkesson, S. Svanberg, Appl. Opt. 49, 4531 (2010)

    Article  ADS  Google Scholar 

  23. E.I. Svensson, J.K. Abbott, T.P. Gosden, A. Coreau, Evol. Ecol. 23, 93 (2009)

    Article  Google Scholar 

  24. R. Turner, Y.H. Song, K.B. Uhm, Bull. Entomol. Res. 89, 557 (1999)

    Article  Google Scholar 

  25. K.M. Wu, H.Q. Feng, D.F. Cheng, Y.Y. Guo, Bull. Entomol. Res. 93, 115 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, L., Guan, Z.G., Zhou, H.J. et al. Agricultural pest monitoring using fluorescence lidar techniques. Appl. Phys. B 106, 733–740 (2012). https://doi.org/10.1007/s00340-011-4785-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4785-8

Keywords

Navigation