Skip to main content
Log in

Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, giving SisEstA. Upon Escherichia coli expression, only the thioredoxin-tagged EstA recombinant protein was soluble. The fusion protein was then purified, and removing the protein tag yielded EcSisEstA. Both forms of the thermophilic EstA enzyme were characterized. We found that SisEstA formed dimer exclusively in solution, whereas EcSisEstA appeared solely as monomer. The former exhibited a stronger resistance to organic solvents than the latter in general, having a much higher temperature optimum (90°C vs. 65°C). More strikingly, SisEstA exhibited a half-life that was more than 32-fold longer than that of EcSisEstA at 90°C. This indicated that thermophilic enzymes yielded from homologous expression should be better biocatalysts than those obtained from mesophilic expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen AJ, Schleper C (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72:102–111

    Article  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Arpigny JL, Jendrossek D, Jaeger KE (1998) A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol Lett 167:69–73

    Article  CAS  Google Scholar 

  • Baumann H, Knapp S, Lundback T, Ladenstein R, Hard T (1994) Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nat Struct Biol 1:808–819

    Article  CAS  Google Scholar 

  • Berkner S, Wlodkowski A, Albers SV, Lipps G (2010) Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14:249–259

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  Google Scholar 

  • Botting CH, Talbot P, Paytubi S, White MF (2010) Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes. Archaea 2010. pii:106341

  • Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  CAS  Google Scholar 

  • Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746

    Article  CAS  Google Scholar 

  • Ejima K, Liu J, Oshima Y, Hirooka K, Shimanuki S, Yokota Y, Hemmi H, Nakayama T, Nishino T (2004) Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme. J Biosci Bioeng 98:445–451

    CAS  Google Scholar 

  • Febbraio F, Andolfo A, Tanfani F, Briante R, Gentile F, Formisano S, Vaccaro C, Scire A, Bertoli E, Pucci P, Nucci R (2004) Thermal stability and aggregation of Sulfolobus solfataricus beta-glycosidase are dependent upon the N-epsilon-methylation of specific lysyl residues: critical role of in vivo post-translational modifications. J Biol Chem 279:10185–10194

    Article  CAS  Google Scholar 

  • Guo L, Brugger K, Liu C, Shah SA, Zheng H, Zhu Y, Wang S, Lillestol RK, Chen L, Frank J, Prangishvili D, Paulin L, She Q, Huang L, Garrett RA (2011) Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus–host interaction studies. J Bacteriol 193:1672–1680

    Article  CAS  Google Scholar 

  • Hemila H, Koivula TT, Palva I (1994) Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta 1210:249–253

    CAS  Google Scholar 

  • Kim S, Lee SB (2004) Thermostable esterase from a thermoacidophilic archaeon: purification and characterization for enzymatic resolution of a chiral compound. Biosci Biotechnol Biochem 68:2289–2298

    Article  CAS  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11:187–193

    Article  CAS  Google Scholar 

  • Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  Google Scholar 

  • Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, Manco G (2005) Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J Mol Biol 345:501–512

    Article  CAS  Google Scholar 

  • Mandrich L, Manco G, Rossi M, Floris E, Jansen-van den Bosch T, Smit G, Wouters JA (2006) Alicyclobacillus acidocaldarius thermophilic esterase EST2’s activity in milk and cheese models. Appl Environ Microbiol 72:3191–3197

    Article  CAS  Google Scholar 

  • Maras B, Consalvi V, Chiaraluce R, Politi L, De Rosa M, Bossa F, Scandurra R, Barra D (1992) The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-epsilon-methyllysine related to thermostability? Eur J Biochem 203:81–87

    Article  CAS  Google Scholar 

  • Minami Y, Wakabayashi S, Wada K, Matsubara H, Kerscher L, Oesterhelt D (1985) Amino acid sequence of a ferredoxin from thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N6-monomethyllysine and phyletic consideration of archaebacteria. J Biochem 97:745–753

    Google Scholar 

  • Moracci M, Nucci R, Febbraio F, Vaccaro C, Vespa N, La Cara F, Rossi M (1995) Expression and extensive characterization of a beta-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus in Escherichia coli: authenticity of the recombinant enzyme. Enzyme Microb Technol 17:992–997

    Article  CAS  Google Scholar 

  • Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R (2002) A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 283:107–115

    Article  CAS  Google Scholar 

  • Park YJ, Choi SY, Lee HB (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. Biochim Biophys Acta 1760:820–828

    Article  CAS  Google Scholar 

  • Park YJ, Yoon SJ, Lee HB (2008) A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. J Bacteriol 190:8086–8095

    Article  CAS  Google Scholar 

  • Pencreac’h G, Baratti JC (1996) Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme Microb Technol 18:417–422

    Article  Google Scholar 

  • Peng N, Xia Q, Chen Z, Liang YX, She Q (2009) An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 74:928–939

    Article  CAS  Google Scholar 

  • Santangelo TJ, Cubonova L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104

    Article  CAS  Google Scholar 

  • Sehgal AC, Callen W, Mathur EJ, Short JM, Kelly RM (2001) Carboxylesterase from Sulfolobus solfataricus P1. Methods Enzymol 330:461–471

    Article  CAS  Google Scholar 

  • Shang YS, Zhang XE, Wang XD, Guo YC, Zhang ZP, Zhou YF (2010) Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2. Biotechnol Lett 32:1151–1157

    Article  CAS  Google Scholar 

  • She Q, Zhang C, Deng L, Peng N, Chen Z, Liang YX (2009) Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus. Biochem Soc Trans 37:92–96

    Article  CAS  Google Scholar 

  • Sobek H, Gorisch H (1989) Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochem J 261:993–998

    CAS  Google Scholar 

  • Suzuki Y, Miyamoto K, Ohta H (2004) A novel thermostable esterase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. FEMS Microbiol Lett 236:97–102

    Article  CAS  Google Scholar 

  • Wang J, Gong X, Zheng G (2010) A novel esterase Sso2518 from Sulfolobus solfataricus with a much lower temperature optimum than the growth temperature. Biotechnol Lett 32:1103–1108

    Article  CAS  Google Scholar 

  • Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806

    Article  CAS  Google Scholar 

  • Zappacosta F, Sannia G, Savoy LA, Marino G, Pucci P (1994) Post-translational modifications in aspartate aminotransferase from Sulfolobus solfataricus. Detection of N-epsilon-methyllysines by mass spectrometry. Eur J Biochem 222:761–767

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank anonymous reviewers for the constructive suggestions for improving the manuscript. This research is supported by the State Key Laboratory of Agricultural Microbiology hosted by Huazhong Agricultural University and by a special grant from the same university, and by the Danish Free Research Council/FTP (grant no. 09-062932), Denmark to Q.S., and by a grant from the Science and Technology Department of Hubei Provincial Government, China to Y.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxiang Liang or Qunxin She.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, Y., Peng, N., Zhao, S. et al. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Appl Microbiol Biotechnol 93, 1965–1974 (2012). https://doi.org/10.1007/s00253-011-3504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3504-z

Keywords

Navigation