Skip to main content
Log in

The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Metagenomics is a powerful tool that allows identifying enzymes with novel properties from the unculturable component of microbiomes. However, thus far only a limited number of laccase or laccase -like enzymes identified through metagenomics has been subsequently biochemically characterized. This work describes the successful bio-mining of bacterial laccase-like enzymes in an acidic bog soil metagenome and the characterization of the first acidobacterial laccase-like multicopper oxidase (LMCO). LMCOs have hitherto been mostly studied in fungi and some have already found applications in diverse industries. However, improved LMCOs are in high demand. Using molecular screening of a small metagenomic library (13,500 clones), a gene encoding a three-domain LMCO (LacM) was detected, showing the highest similarity to putative copper oxidases of Candidatus Solibacter (Acidobacteria). The encoded protein was expressed in Escherichia coli, purified by affinity chromatography and biochemically characterized. LacM oxidized a variety of phenolic substrates, including two standard laccase substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), k cat/k M  = 8.45 s−1 mM−1; 2,6-dimethoxyphenol (2,6-DMP), k cat/k M  = 6.42 s−1 mM−1), next to L-3,4-dihydroxyphenylalanine (L-DOPA), vanillic acid, syringaldazine, pyrogallol, and pyrocatechol. With respect to the latter two lignin building blocks, LacM showed the highest catalytic activity (k cat/k M  = 173.6 s−1 mM−1) for pyrogallol, with ca. 20% activity preserved even at pH 8.0. The enzyme was thermostable and heat-activated in the interval 40–60 °C, with an optimal activity on ABTS at 50 °C. It was rather stable at high salt concentration (e.g., 34% activity preserved at 500 mM NaCl) and in the presence of organic solvents. Remarkably, LacM decolored azo and triphenylmethane dyes, also in the absence of redox mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandić-Mulec I (2011a) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 10(6):e25724

    Article  Google Scholar 

  • Ausec L, van Elsas JD, Mandić-Mulec I (2011b) Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol Biochem 43(5):975–983

    Article  CAS  Google Scholar 

  • Ausec L, Črnigoj M, Snajder M, Ulrich NP, Mandić-Mulec I (2015) Characterization of a novel high-pH tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol 99(23):9987–9999

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942

    Article  CAS  PubMed  Google Scholar 

  • Berini F, Presti I, Beltrametti F, Pedroli M, Vårum KM, Pollegioni L, Sjöling S, Marinelli F (2017) Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Factories 16(1):16

    Article  Google Scholar 

  • Brander S, Mikkelsen JD, Kepp KP (2014) Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One 10(6):e99402

    Article  Google Scholar 

  • Callejòn S, Sendra R, Ferrer S, Pardo I (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Appl Microbiol Biotechnol 100(7):3113–3124

    Article  PubMed  Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12(7):1842–1854

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Xu WQ, Pan XR, Lu L (2015) A novel non-blue laccase from Bacillus amyloliquefaciens: secretory expression and characterization. Int J Biol Macromol 76:39–44

    Article  CAS  PubMed  Google Scholar 

  • Cretoiu MS, Berini F, Kielak AM, Marinelli F, van Elsas JD (2015) A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl Microbiol Biotechnol 99(19):8199–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasia S, Nair AJ (2016) Screening of potent laccase producing organisms based on the oxidation pattern of different phenolic substrates. Int J Curr Microbiol App Sci 5(5):127–137

    Article  Google Scholar 

  • Diaz A, Tomba E, Lennarson R, Richard R, Bagajewicz MJ, Harrison RF (2010) Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnol Bioeng 105(2):374–383

    Article  CAS  PubMed  Google Scholar 

  • Dubè E, Shareck F, Hartubise I, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79(4):597–603

    Article  PubMed  Google Scholar 

  • Durão P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13(2):183–193

    Article  PubMed  Google Scholar 

  • Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, Hong Y, Ge H, Xiao Y (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89(4):1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y (2012a) Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 7(11):e50312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ (2012b) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhou P, Chang F, Yin Q, Fang W, Yuan J, Zhang X, Xiao Y (2014) Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One 9(7):e102423

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886

    Article  CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Guan ZB, Zhang N, Song CM, Zhou W, Zhou LX, Zhao H, Xu CW, Cai YJ, Liao XR (2014) Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1. Appl Biochem Biotechnol 172(3):1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Gunne M, Al-Sultani D, Urlacher VB (2013) Enhancement of copper content and specific activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper chaperone in E. coli. J Biotechnol 168(3):252–255

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CM, Pollegioni L, Ghisla S (2001) pH and kinetic isotope effects in D-amino acid oxidase catalysis. Eur J Biochem 268(21):5504–5520

    Article  CAS  PubMed  Google Scholar 

  • Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98(6):2819–2828

    Article  CAS  PubMed  Google Scholar 

  • Ihssen J, Reiss R, Luchsinger R, Thöny-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2006) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68(5):2391–2396

    Article  Google Scholar 

  • Jimenez-Juarez N, Roman-Miranda R, Beaza A, Sanchez-Amat A, Vazquez-Duhalt R, Valderrama B (2005) Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol 117(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Job V, Molla G, Pilone MS, Pollegioni L (2002) Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur J Biochem 269(5):1456–1463

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T (2007) Structure and function of the engineered multicopper oxidase CueO from Escherichia coli—deletion of the methionine-rich helical region covering the substrate-binding site. J Mol Biol 373(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744

    PubMed  PubMed Central  Google Scholar 

  • Kim HW, Lee SY, Park H, Jeon SJ (2015) Expression, refolding and characterization of a small laccase from Thermus thermophiles HJ6. Protein Expr Purif 114:37–43

    Article  CAS  PubMed  Google Scholar 

  • Mannisto MK, Tiirola M, Haggblom MM (2007) Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59(2):452–465

    Article  CAS  PubMed  Google Scholar 

  • Mannisto MK, Rawat S, Starovoytov V, Haggblom MM (2011) Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61(8):1823–1828

    Article  CAS  PubMed  Google Scholar 

  • Margot J, Bennati-Granier C, Maillard J, Blanquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277(24):18849–18859

    Article  CAS  PubMed  Google Scholar 

  • Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott ME, Kalinowski J, Rückert C, Wentzel A, Lale R (2016) Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina-Guijarro JM, Pérez J, Muñoz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12(1):13–21

    CAS  PubMed  Google Scholar 

  • Mollania N, Khajeh K, Ranjbar B, Rashno F, Akbari N, Fathi-Roudsari M (2013) An efficient in vitro refolding of recombinant bacterial laccase in Escherichia coli. Enzym Microb Technol 52(6–7):325–330

    Article  CAS  Google Scholar 

  • Nakamura K, Kawabata T, Yura K, Nobuhiro G (2003) Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. FEBS Lett 553(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Natale P, Brüser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochim Biophys Acta 1778(9):1735–1756

    Article  CAS  PubMed  Google Scholar 

  • Nunes da Rocha U, van Elsas JD, van Overbeek LS (2010) Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. J Microbiol Methods 83:141–148

    Article  Google Scholar 

  • Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of Acidobacteria from acid Sphagnum peat. ISME J 2(5):551–560

    Article  CAS  PubMed  Google Scholar 

  • Reiss R, Ihssen J, Thöny-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278(34):31958–31963

    Article  CAS  PubMed  Google Scholar 

  • Roth R, Spiess AC (2015) Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst Eng 38(12):2285–2313

    Article  CAS  PubMed  Google Scholar 

  • Schägger H, van Jagow G (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  PubMed  Google Scholar 

  • Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75(5):955–962

    Article  CAS  PubMed  Google Scholar 

  • Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One 9(5):e96951

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128

    Article  PubMed  Google Scholar 

  • Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67(10):2167–2175

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonin F, Rosini E, Piubelli L, Sanchez-Amat A, Pollegioni L (2016a) Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea. Protein Expr Purif 123:60–69

    Article  CAS  PubMed  Google Scholar 

  • Tonin F, Melis R, Cordes A, Sanchez-Amat A, Pollegioni L, Rosini E (2016b) Comparison of different microbial laccases as tools for industrial uses. New Biotechnol 33(3):387–398

    Article  CAS  Google Scholar 

  • Van Elsas JD, Speksnijder AJ, van Overbeek LS (2008) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Methods 75(3):515–522

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganism in soils. Appl Environ Microbiol 75(7):2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye M, Li G, Liang WQ, Liu YH (2010) Molecular cloning and characterization of a novel-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol 87(3):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mater 192(2):855–873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Robi Mesojednik, Marko Verce, and Vesna Jerman from University of Ljubljana for technical assistance and Tjaša Danevčič from University of Ljubljana for helpful discussions. We also thank Loredano Pollegioni from University of Insubria for providing the reference protein used for electrophoretic analysis and Andreas Schlüter from Bielefeld University for sequencing of the fosmid fragment. CC is a PhD student of the “Dottorato in Biotecnologie, Bioscienze e Tecnologie Chirurgiche” at University of Insubria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Mandic-Mulec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by FP7-KBBE project METAEXPLORE (Metagenomics for bioexploration - Tools and application), grant agreement No. 222625 to JDvanE, FM, and IMM. Additional funds were provided by the agreements No. J4–4250 and P4–0116 awarded by Slovenian Research Agency to IMM. MIUR (Ministero italiano dell’Istruzione, dell’Università e della Ricerca) fellowships and CIB (Consorzio Interuniversitario per le Biotecnologie) contributions to FB and CC are also acknowledged.

Electronic supplementary material

ESM 1

(PDF 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ausec, L., Berini, F., Casciello, C. et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol 101, 6261–6276 (2017). https://doi.org/10.1007/s00253-017-8345-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8345-y

Keywords

Navigation