Skip to main content
Log in

Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using a fluorescent whole-cell Escherichia coli biosensor previously developed in our laboratory, we determined total and bioavailable lysine in four feed ingredients (soybean, cottonseed, meat and bone meal, and sorghum) and three complete feeds (chick starter and finisher, and swine starter). The same feed sources were analyzed for total lysine by high performance liquid chromatography (HPLC) and bioavailable lysine by chick bioassay. No significant differences were found between bioavailable lysine estimates for soybean, cottonseed, meat and bone meal, chick starter and finisher, and swine starter obtained by the fluorescent E. coli biosensor and chick bioassay. Except for sorghum, the E. coli biosensor estimates for total lysine were highly comparable to those obtained by HPLC. Comparisons were also conducted between conventionally performed optical density-based and the newly developed fluorescence-based lysine assay. The lack of significant differences in data obtained for total and bioavailable lysine by both detection modes indicated reliance and accuracy of the fluorescent E. coli biosensor. Overall results suggest that the microbial assay based on green fluorescent protein fluorescence represents a promising alternative method for lysine quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen JB, Sternberg C, Poulsen LK, Bjørn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angyal G (1996) U.S. Food and drug administration methods for the microbiological analysis of selected nutrients. AOAC International, Gaithersburg, MD, USA

    Google Scholar 

  • Applegate T, Thompson K, Dudley-Cash WA (2004) Amino acid digestibilities needed for poultry rations. Feedstuffs 76:15–17

    Google Scholar 

  • Bailey CA, Stipanovic RD, Ziehr MS, Haq AU, Sattar M, Kubena LF, Kim HL, Vieira RM (2000) Cottonseed with a high (+)- to (−)- gossypol ennantiomer ratio favorable to broiler production. J Agric Food Chem 48:5692–5695

    Article  CAS  PubMed  Google Scholar 

  • Burlage RS (1997) Emerging technologies: bioreporters, biosensors, and microprobes. In: Hurst CJ, Knudsen GR, McInerny MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM, Washington, DC, pp 115–123

    Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chalova VI, Kim WK, Zabala-Díaz IB, Woodward CL, Ricke SC (2004) Development of a whole cell sensor-green fluorescent protein based method for estimating lysine bioavailability in poultry feed proteins. Poult Sci 83(Suppl 1):267

    Google Scholar 

  • Chalova V, Woodward CL, Ricke SC (2006) Application of an Escherichia coli green fluorescent protein–based biosensor under nonsterile conditions and autofluorescence background. Lett Appl Microbiol 42:265–270

    Article  CAS  PubMed  Google Scholar 

  • Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Cork LC, Clarkson TB, Jacoby RO, Gaertner DJ, Leary SL, Linn JM, Pakes SP, Ringler DH, Strandberg JD, Swindle MM (1997) The costs of animal research: origins and options. Science 276:758–759

    Article  CAS  PubMed  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  CAS  PubMed  Google Scholar 

  • D’Mello JPF (2003) Responses of growing poultry to amino acids. In: D’Mello JPF (ed) Amino acids in animal nutrition, 2nd edn. CAB International, Wallingford, UK, pp 237–263

    Chapter  Google Scholar 

  • Douglas MW, Parsons CM, Bedford MR (2000) Effect of various soybean meal sources and Avizyme on chick growth performance and illeal digestible energy. J Appl Poult Res 9:74–80

    Article  CAS  Google Scholar 

  • Dunn MS, Camien MN, Shankman S, Frankl W, Rockland LB (1944) Investigations of amino acids, peptides, and proteins. XIX. The determination of lysine in protein hydrolysates by a microbiological method. J Biol Chem 156:715–724

    Article  CAS  Google Scholar 

  • Ebadi MR, Pourreza J, Jamalian J, Edriss MA, Samie AH, Mirhadi SA (2005) Amino acid content and availability in low, medium and high tannin sorghum grain for poultry. Int J Poult Sci 4:27–31

    Google Scholar 

  • Erickson AM, Zabala-Diaz IB, Ricke SC (1999a) Antibiotic amendment for suppression of indigenous microflora in feed sources for an Escherichia coli auxotroph lysine assay. J Appl Microbiol 87:125–130

    Article  CAS  PubMed  Google Scholar 

  • Erickson AM, Li X, Woodward CL, Ricke SC (1999b) Optimisation of enzyme treatment for the degradation of feed proteins for an Escherichia coli auxotroph lysine availability assay. J Sci Food Agric 79:1929–1935

    Article  CAS  Google Scholar 

  • Erickson AM, Zabala Díaz IB, Kwon YM, Ricke SC (2000) A bioluminescent Escherichia coli auxotroph for use in an in vitro lysine availability assay. J Microbiol Methods 40:207–212

    Article  CAS  PubMed  Google Scholar 

  • Erickson AM, Li X, Zabala-Díaz IB, Ricke SC (2002) Potential for measurement of lysine bioavailability in poultry feeds by rapid microbiological assays—a review. J Rapid Methods Autom Microbiol 10:1–8

    Article  CAS  Google Scholar 

  • Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–199

    Article  CAS  PubMed  Google Scholar 

  • Fernandez SR, Parsons CM (1996) Bioavailability of the digestible lysine and valine in cottonseed and soybean meals for chicks. Poult Sci 75:216–223

    Article  CAS  PubMed  Google Scholar 

  • France J, Theodorou MK, Lowman RS, Beever DE (2000) Feed evaluation for animal production. In: Theodorou MK, France J (eds) Feeding systems and feed evaluation models. CABI Publishing, Wallingford, UK, pp 1–9

    Google Scholar 

  • Friedman M (1999) Chemistry, nutrition and microbiology of D-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  • Froelich CA Jr, Ricke SC (2005) Rapid bacterial-based bioassays for quantifying methionine bioavailability in animal feeds: a review. J Rapid Methods Autom Microbiol 13:1–10

    Article  CAS  Google Scholar 

  • Guthneck BT, Bennett BA, Schweigert BS (1953) Utilization of amino acids from foods by the rat. II. Lysine. J Nutr 49:289–294

    Article  CAS  PubMed  Google Scholar 

  • Hankes LV, Riesen WH, Henderson LM, Elvehjem CA (1948) Liberation of amino acids from raw and heated casein by acid and enzyme hydrolysis. J Biol Chem 176:467–476

    Article  CAS  PubMed  Google Scholar 

  • Henderson LM, Snell EE (1948) A uniform medium for determination of amino acids with various microorganisms. J Biol Chem 172:15–29

    Article  CAS  PubMed  Google Scholar 

  • Hitchins AD, McDonough FE, Wells PA (1989) The use of Escherichia coli mutants to measure the bioavailability of essential amino acids in foods. Plant Foods Hum Nutr 39:109–120

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ (1992) Principles, problems and application of amino acid digestibility in poultry. World’s Poult Sci J 48:232–246

    Article  Google Scholar 

  • Johnson ML, Parsons CM, Fahey GC Jr, Merchen NR, Aldrich CG (1998) Effects of species raw material source, ash content, and processing temperature on amino acid digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J Anim Sci 76:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Johnston J, Coon CN (1979) A comparison of six protein quality assays using commercially available protein meals. Poult Sci 58:919–927

    Article  CAS  Google Scholar 

  • Kavanagh F (1963) Analytical microbiology. Academic, New York, NY, USA

    Google Scholar 

  • Kircher M, Pfefferle W (2001) The fermentative production of L-lysine as an animal feed additive. Chemosphere 43:27–31

    Article  CAS  PubMed  Google Scholar 

  • Kivi JT (2000) Amino acids. In: Nollet LML (ed) Food analysis by HPLC, 2nd edn. Marcel Dekker, New York, NY, USA, pp 55–97

    Google Scholar 

  • Leveau JHJ, Lindow SE (2001) Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J Bacteriol 183:6752–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis AJ, Bayley HS (1995) Amino acid bioavailability. In: Ammerman CB, Baker DH, Lewis AJ (eds) Bioavailability of nutrients for animals: amino acids, minerals, and vitamins. Academic, San Diego, CA, pp 35–65

    Chapter  Google Scholar 

  • Li X, Ricke SC (2002) Influence of soluble lysine Maillard reaction products on Escherichia coli amino acid lysine auxotroph growth-based assay. J Food Sci 67:2126–2128

    Article  CAS  Google Scholar 

  • Li X, Ricke SC (2003) Generation of an Escherichia coli lysA targeted deletion mutant by double cross-over recombination for potential use in a bacterial growth-based lysine assay. Lett Appl Microbiol 37:458–462

    Article  CAS  PubMed  Google Scholar 

  • Li X, Erickson AM, Ricke SC (1999) Comparison of minimal media and inoculum concentration to decrease the lysine growth assay response time of an Escherichia coli lysine auxotroph mutant. J Rapid Methods Autom Microbiol 7:279–290

    Article  CAS  Google Scholar 

  • Li X, Erickson AM, Ricke SC (2000) Agitation during incubation reduces the time required for a lysine microbiological growth assay using an Escherichia coli auxotrophic mutant. J Rapid Methods Autom Microbiol 8:83–94

    Article  Google Scholar 

  • Littell RC, Lewis AJ, Henry PR (1995) Statistical evaluation of bioavailability assays. In: Ammerman CB, Baker DH, Lewis AJ (eds) Bioavailability of nutrients for animals: amino acids, minerals, and vitamins. Academic, San Diego, CA, pp 5–33

    Chapter  Google Scholar 

  • Liu HJ (1994) Determination of amino acids by precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and high performance liquid chromatography with ultraviolet detection. J Chromatogr A 670:59–66

    Article  CAS  Google Scholar 

  • McFall E, Newman EB (1996) Amino acids as carbon sources. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol. 1, 2nd edn. ASM, Washington, DC, pp 358–379

    Google Scholar 

  • Miller CG (1996) Protein degradation and proteolytic modification. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. ASM, Washington, DC, pp 938–966

    Google Scholar 

  • National Research Council (1994) Nutrient requirements of poultry. National Academy Press, Washington, DC, USA

    Google Scholar 

  • Nordheim JP, Coon CN (1984) A comparison of four methods for determining available lysine in animal protein meals. Poult Sci 63:1040–1051

    Article  CAS  Google Scholar 

  • O’Brien J, Morrissey PA (1989) Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr 28:211–248

    Article  PubMed  Google Scholar 

  • Palacious MF, Easter RA, Soltwedel KT, Parsons CM, Douglas MW, Hymowitz T, Pettigrew JE (2004) Effect of soybean variety on growth performance of young chicks and pigs. J Anim Sci 82:1108–1114

    Article  Google Scholar 

  • Parsons CM, Castanon F, Han Y (1997) Protein and amino acid quality of meat and bone meal. Poult Sci 76:361–368

    Article  CAS  PubMed  Google Scholar 

  • Payne JW, Bell G, Higgins F (1977) The use of Escherichia coli Lys- auxotroph to assay nutritionally available lysine in biological materials. J Appl Bacteriol 42:165–177

    Article  CAS  PubMed  Google Scholar 

  • Prachaiyo P, McLandsborough LA (2000) A microscopic method to visualize Escherichia coli interaction with beef muscle. J Food Prot 63:427–433

    Article  CAS  PubMed  Google Scholar 

  • Ravindran V, Bryden WL (1999) Amino acid availability in poultry– in vitro and in vivo measurements. Aust J Agric Res 50:889–908

    Article  CAS  Google Scholar 

  • Robel EJ, Frobish LT (1977) Evaluation of the chick bio-assay for estimating sulfur amino acid, lysine, and tryptophan availability in soybean meal. Poult Sci 56:1399–1404

    Article  CAS  Google Scholar 

  • Sambrook J, Frish EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

    Google Scholar 

  • Sibbald IR, Wolynetz MS (1985) The bioavailability of supplementary lysine and its effect on the energy and nitrogen excretion of adult cockerels fed diets diluted with cellulose. Poult Sci 64:1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Siouffi A-M (2000) HPLC. In: Nollet LML (ed) Food analysis by HPLC, 2nd edn. Marcel Dekker, New York, NY, USA pp 1–54

    Google Scholar 

  • Stephenson EL, York JO, Bragg DB, Ivy CA (1971) The amino acid content and availability of different strains of grain sorghum to the chick. Poult Sci 50:581–584

    Article  CAS  Google Scholar 

  • Taiganides EP, White RK (1969) The menace of noxious gases in animal units. Trans Am Soc Agric Eng 12:359–362

    Article  CAS  Google Scholar 

  • Tesseraud S, Temim S, Le Bihan-Duval E, Chagneau AM (2001) Increased responsiveness to dietary lysine deficiency of pectoralis major muscle protein turnover in broilers selected on breast development. J Anim Sci 79:927–933

    Article  CAS  PubMed  Google Scholar 

  • Vialette M, Jandos-Rudnik A-M, Guyard C, Legeay O, Pinon A, Lange M (2004) Validating the use of green fluorescent-marked Escherichia coli O157:H7 for assessing the organism behaviour in foods. J Appl Microbiol 96:1097–1104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Hatch grant H8311 administered by the Texas Agricultural Experiment Station and Texas Advanced Technology Program, grant # 000517-0220-2001 (Texas Higher Education Board, Austin, TX, USA). The authors would like to express their thanks to Julia Sonka for her assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Ricke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalova, V.I., Kim, W.K., Woodward, C.L. et al. Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor. Appl Microbiol Biotechnol 76, 91–99 (2007). https://doi.org/10.1007/s00253-007-0989-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0989-6

Keywords

Navigation