Skip to main content
Log in

Use of solid-phase extraction to enable enhanced detection of acyl homoserine lactones (AHLs) in environmental samples

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A challenge for understanding the role of bacterial cell–cell signalling in the environment is the detection of those signals, which are often present in low (nmol L−1) concentrations. We describe here a simple purification method, solid-phase extraction (SPE), for increasing the sensitivity of detection for one such group of signals, acyl homoserine lactones (AHLs), in environmental samples. Spiking of dried marine sponge tissue (Stylinos sp.) with AHLs resulted in detection down to 0.01 ppm for 3-oxo-hexanoyl homoserine lactone (3-oxo C6-HSL) and 1 ppm for hexanoyl homoserine lactone (C6-HSL). Compared with liquid extraction methods use of SPE resulted in twofold and tenfold improvements in sensitivity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuqua C, Parsek MR, Greenberg EP (2001) Annu Rev Genet 35:439–468

    Article  PubMed  CAS  Google Scholar 

  2. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Microbiol Rev 25:365–404

    CAS  Google Scholar 

  3. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Mol Plant Microbe In 11:1119–1129

    Article  CAS  Google Scholar 

  4. Gram L, Grossart HP, Schlingloff A, Kiorboe T (2002) Appl Environ Microbiol 68:4111–4116

    Article  PubMed  CAS  Google Scholar 

  5. Gram L, Christensen AB, Ravn L, Molin S, Givskov M (1999) Appl Environ Microbiol 65:3458–3463

    PubMed  CAS  Google Scholar 

  6. Zhu H, Thuruthyil SJ, Willcox MDP (2001) Clin Exp Ophthalmol 29:150–152

    Article  CAS  Google Scholar 

  7. McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) FEMS Microbiol Lett 154:259–26

    Article  PubMed  CAS  Google Scholar 

  8. Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Appl Environ Microbiol 64:3486–3490

    PubMed  CAS  Google Scholar 

  9. Vincke E, Boon N, Verstraete W (2001) Appl Microbiol Biotechnol 57:776–785

    Article  PubMed  CAS  Google Scholar 

  10. Boettcher KJ, Ruby EG (1995) J Bacteriol 177:1053–1058

    PubMed  CAS  Google Scholar 

  11. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) P Natl Acad Sci USA 94:6036–6041

    Article  CAS  Google Scholar 

  12. Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA (2002) Can J Microbiol 48:374–378

    Article  PubMed  CAS  Google Scholar 

  13. Piedra LA, Tejedor MD, Hernando A, Aguera D, Barcelo Fernandez-Alba A (2000) Chromatographia 52:631–638

    Article  CAS  Google Scholar 

  14. Geerdink RB, Niessen WMA, Brinkman UAT (2002) J Chromatogr A 970:65–93

    Article  PubMed  CAS  Google Scholar 

  15. Farre M, Barcelo D (2003) Trac-Trend Anal Chem 22:299–310

    Article  CAS  Google Scholar 

  16. Frommberger M, Schmitt-Kopplin P, Ping G, Frisch H, Schmid M, Zhang Y, Hartmann A, Kettrup A (2004) Anal Bioanal Chem 378:1014–1020

    Article  PubMed  CAS  Google Scholar 

  17. Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg PD (2004) Appl Environ Microb 70:4387–4389

    Article  CAS  Google Scholar 

  18. Fuqua C, Winans SC (1996) J Bacteriol 178:435–440

    PubMed  CAS  Google Scholar 

  19. Srinivasan S, Ostling J, Charlton T, de Nys R, Takayama K, Kjelleberg S (1998) J Bacteriol 180:201–209

    PubMed  CAS  Google Scholar 

  20. Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) Environ Microbiol 2:530–541

    Article  PubMed  CAS  Google Scholar 

  21. Zhu J, Chai YR, Zhong ZT, Li SP, Winans SC (2003) Appl Environ Microbiol 69:6949–6953

    Article  PubMed  CAS  Google Scholar 

  22. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) Appl Environ Microbiol 67:575–585

    Article  PubMed  CAS  Google Scholar 

  23. Kaplan HB, Greenberg EP (1985) J Bacteriol 163:1210–1214

    PubMed  CAS  Google Scholar 

  24. Williams P, Bainton NJ, Swift S, Chhabra SR, Winson MK, Stewart GSAB, Salmond GPC, Bycroft B (1992) FEMS Microbiol Lett 100:161–168

    Article  CAS  Google Scholar 

  25. Chernin LS, Winson MK, Thompson JM, Havan S, Bycroft BW, Chet I, Williams P, Stewart GSAB (1998) J Bacteriol 180:4435–4441

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Feodor-Lynen-Fellowship from the Alexander-von-Humboldt Foundation to P. Schupp and Australian post-graduate scholarships to T. Charlton and M. Taylor, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy S. Charlton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schupp, P.J., Charlton, T.S., Taylor, M.W. et al. Use of solid-phase extraction to enable enhanced detection of acyl homoserine lactones (AHLs) in environmental samples. Anal Bioanal Chem 383, 132–137 (2005). https://doi.org/10.1007/s00216-005-3387-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3387-x

Keywords

Navigation